Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Piotrowska is active.

Publication


Featured researches published by Anna Piotrowska.


Neural Plasticity | 2015

Parthenolide Relieves Pain and Promotes M2 Microglia/Macrophage Polarization in Rat Model of Neuropathy

Katarzyna Popiolek-Barczyk; Natalia Kolosowska; Anna Piotrowska; Wioletta Makuch; Ewelina Rojewska; Agnieszka M. Jurga; Dominika Pilat; Joanna Mika

Neuropathic pain treatment remains a challenge because pathomechanism is not fully understood. It is believed that glial activation and increased spinal nociceptive factors are crucial for neuropathy. We investigated the effect of parthenolide (PTL) on the chronic constriction injury to the sciatic nerve (CCI)-induced neuropathy in rat. We analyzed spinal changes in glial markers and M1 and M2 polarization factors, as well as intracellular signaling pathways. PTL (5 µg; i.t.) was preemptively and then daily administered for 7 days after CCI. PTL attenuated the allodynia and hyperalgesia and increased the protein level of IBA1 (a microglial/macrophage marker) but did not change GFAP (an astrocyte marker) on day 7 after CCI. PTL reduced the protein level of M1 (IL-1β, IL-18, and iNOS) and enhanced M2 (IL-10, TIMP1) factors. In addition, it downregulated the phosphorylated form of NF-κB, p38MAPK, and ERK1/2 protein level and upregulated STAT3. In primary microglial cell culture we have shown that IL-1β, IL-18, iNOS, IL-6, IL-10, and TIMP1 are of microglial origin. Summing up, PTL directly or indirectly attenuates neuropathy symptoms and promotes M2 microglia/macrophages polarization. We suggest that neuropathic pain therapies should be shifted from blanketed microglia/macrophage suppression toward maintenance of the balance between neuroprotective and neurotoxic microglia/macrophage phenotypes.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2016

Beneficial properties of maraviroc on neuropathic pain development and opioid effectiveness in rats

Klaudia Kwiatkowski; Anna Piotrowska; Ewelina Rojewska; Wioletta Makuch; Agnieszka M. Jurga; Joanna Slusarczyk; Ewa Trojan; Agnieszka Basta-Kaim; Joanna Mika

Targeting chemokine signaling pathways is crucial in neuropathy development. In this study, we investigated the influence of chronic administration of maraviroc (CCR5 antagonist) on nociception and opioid effectiveness during neuropathy, which develops as a result of chronic constriction injury (CCI) of the sciatic nerve. To investigate the mechanism of action of maraviroc, we measured the expression of glial cell markers, CCR5 and certain CCR5 ligands (CCL3, CCL4, CCL5, CCL7, CCL11), in the spinal cord and dorsal root ganglia (DRG) of vehicle- and maraviroc-treated, CCI-exposed rats. Our results demonstrate that chronic intrathecal administration of maraviroc diminished neuropathic pain symptoms on day 7 post-CCI. Western blot analysis showed that maraviroc diminished protein level of Iba-1 and GFAP and reversed the up-regulated CCR5 expression observed in spinal cord and DRG after CCI. Additionally, using qRT-PCR, we demonstrated that CCR5 and some of its pronociceptive ligands (CCL3, CCL4, CCL5) increased in the spinal cord after nerve injury, and maraviroc effectively diminished those changes. However, CCL11 spinal expression was undetectable, even after injury. In vitro primary culture studies showed that CCL3, CCL4, CCL5 and CCL7 (but not CCL11) were of microglial and astroglial origin and were up-regulated after LPS stimulation. Our results indicate that maraviroc not only attenuated the development of neuropathic pain symptoms due to significant modulation of neuroimmune interactions but also intensified the analgesic properties of morphine and buprenorphine. In sum, our results suggest the pharmacological modulation of CCR5 by maraviroc as a novel therapeutic approach for co-treatment of patients receiving opioid therapy for neuropathy.


Neural Plasticity | 2016

Blockade of Toll-Like Receptors (TLR2, TLR4) Attenuates Pain and Potentiates Buprenorphine Analgesia in a Rat Neuropathic Pain Model

Agnieszka M. Jurga; Ewelina Rojewska; Anna Piotrowska; Wioletta Makuch; Dominika Pilat; Barbara Przewlocka; Joanna Mika

Accumulating evidence indicates that microglial TLR2 and TLR4 play a significant role in nociception. Experiments were conducted to evaluate the contribution of TLR2 and TLR4 and their adaptor molecules to neuropathy and their ability to amplify opioid effectiveness. Behavioral tests (von Freys and cold plate) and biochemical (Western blot and qRT-PCR) analysis of spinal cord and DRG tissue were conducted after chronic constriction injury (CCI) to the sciatic nerve. Repeated intrathecal administration of LPS-RS (TLR2 and TLR4 antagonist) and LPS-RS Ultrapure (TLR4 antagonist) attenuated allodynia and hyperalgesia. Biochemical analysis revealed time-dependent upregulation of mRNA and/or protein levels of TLR2 and TLR4 and MyD88 and TRIF adaptor molecules, which was paralleled by an increase in IBA-1/CD40-positive cells under neuropathy. LPS-RS and LPS-RS Ultrapure similarly influenced opioid analgesia by enhancing the effectiveness of buprenorphine but not morphine. Summing up, in light of their upregulation over the course of pain, both TLR2 and TLR4 may indeed play a significant role in neuropathy, which could be linked to the observed activation of IBA-1/CD40-positive cells. Blockade of TLR2 and TLR4 produced analgesia and enhanced buprenorphines effectiveness, which suggests that they may be a putative target for future pharmacological pain relief tools, especially for opioid rotation, when the effect of morphine is tolerated.


Neuropharmacology | 2016

Pharmacological kynurenine 3-monooxygenase enzyme inhibition significantly reduces neuropathic pain in a rat model.

Ewelina Rojewska; Anna Piotrowska; Wioletta Makuch; Barbara Przewlocka; Joanna Mika

Recent studies have highlighted the involvement of the kynurenine pathway in the pathology of neurodegenerative diseases, but the role of this system in neuropathic pain requires further extensive research. Therefore, the aim of our study was to examine the role of kynurenine 3-monooxygenase (Kmo), an enzyme that is important in this pathway, in a rat model of neuropathy after chronic constriction injury (CCI) to the sciatic nerve. For the first time, we demonstrated that the injury-induced increase in the Kmo mRNA levels in the spinal cord and the dorsal root ganglia (DRG) was reduced by chronic administration of the microglial inhibitor minocycline and that this effect paralleled a decrease in the intensity of neuropathy. Further, minocycline administration alleviated the lipopolysaccharide (LPS)-induced upregulation of Kmo mRNA expression in microglial cell cultures. Moreover, we demonstrated that not only indirect inhibition of Kmo using minocycline but also direct inhibition using Kmo inhibitors (Ro61-6048 and JM6) decreased neuropathic pain intensity on the third and the seventh days after CCI. Chronic Ro61-6048 administration diminished the protein levels of IBA-1, IL-6, IL-1beta and NOS2 in the spinal cord and/or the DRG. Both Kmo inhibitors potentiated the analgesic properties of morphine. In summary, our data suggest that in neuropathic pain model, inhibiting Kmo function significantly reduces pain symptoms and enhances the effectiveness of morphine. The results of our studies show that the kynurenine pathway is an important mediator of neuropathic pain pathology and indicate that Kmo represents a novel pharmacological target for the treatment of neuropathy.


PLOS ONE | 2015

PD98059 Influences Immune Factors and Enhances Opioid Analgesia in Model of Neuropathy

Ewelina Rojewska; Katarzyna Popiolek-Barczyk; Natalia Kolosowska; Anna Piotrowska; Magdalena Zychowska; Wioletta Makuch; Barbara Przewlocka; Joanna Mika

Neuropathic pain treatment remains challenging due to ineffective therapy and resistance to opioid analgesia. Mitogen-activated protein kinase kinase (MAPKK) have been identified as the crucial regulators of pro- and antinociceptive factors. We used PD98059, an inhibitor of the MAPKK family members MEK1/2. The aim of study was to examine the influence of single and/or repeated PD98059 on nociception and opioid effectiveness in neuropathy. Moreover, we examined how PD98059 influences selected members of cellular pathways and cytokines. The PD98059 (2.5 mcg) was intrathecally preemptively administered before chronic constriction injury (CCI), and then once daily for 7 days. Additionally, at day 7 after CCI the PD98059-treated rats received a single injection of opioids. Using Western blot and qRT-PCR techniques in PD98059-treated rats we analyzed the mRNA and/or protein level of p38, ERK1/2, JNK, NF-kappaB, IL-1beta, IL-6, iNOS and IL-10 in the lumbar spinal cord. Our results indicate that PD98059 has an analgesic effects and potentiates morphine and/or buprenorphine analgesia. Parallel we observed that PD98059 inhibit upregulation of the CCI-elevated p38, ERK1/2, JNK and NF-kappaB protein levels. Moreover, PD98059 also prevented increase of pro- (IL-1beta, IL-6, and iNOS) but enhances anti-nociceptive (IL-10) factors. Summing up, PD98059 diminished pain and increased the effectiveness of opioids in neuropathy. The inhibition of MEKs might inactivate a variety of cell signaling pathways that are implicated in nociception.


Journal of Neuroimmunology | 2016

Direct and indirect pharmacological modulation of CCL2/CCR2 pathway results in attenuation of neuropathic pain — In vivo and in vitro evidence

Anna Piotrowska; Klaudia Kwiatkowski; Ewelina Rojewska; Joanna Slusarczyk; Wioletta Makuch; Agnieszka Basta-Kaim; Barbara Przewlocka; Joanna Mika

The repeated administration of microglial inhibitor (minocycline) and CCR2 antagonist (RS504393) attenuated the neuropathic pain symptoms in rats following chronic constriction injury of the sciatic nerve, which was associated with decreased spinal microglia activation and the protein level of CCL2 and CCR2. Furthermore, in microglia primary cell cultures minocycline downregulated both CCL2 and CCR2 protein levels after lipopolysaccharide-stimulation. Additionally, in astroglia primary cell cultures minocycline decreased the expression of CCL2, but not CCR2. Our results provide new evidence that modulation of CCL2/CCR2 pathway by microglial inhibitor as well as CCR2 antagonist is effective for neuropathic pain development in rats.


BioMed Research International | 2014

Minocycline Enhances the Effectiveness of Nociceptin/Orphanin FQ during Neuropathic Pain

Katarzyna Popiolek-Barczyk; Ewelina Rojewska; Agnieszka M. Jurga; Wioletta Makuch; Ferenz Zador; Anna Borsodi; Anna Piotrowska; Barbara Przewlocka; Joanna Mika

Nociceptin/orphanin FQ (N/OFQ) antinociception, which is mediated selectively by the N/OFQ peptide receptor (NOP), was demonstrated in pain models. In this study, we determine the role of activated microglia on the analgesic effects of N/OFQ in a rat model of neuropathic pain induced by chronic constriction injury (CCI) to the sciatic nerve. Repeated 7-day administration of minocycline (30 mg/kg i.p.), a drug that affects microglial activation, significantly reduced pain in CCI-exposed rats and it potentiates the analgesic effects of administered N/OFQ (2.5–5 μg i.t.). Minocycline also downregulates the nerve injury-induced upregulation of NOP protein in the dorsal lumbar spinal cord. Our in vitro study showed that minocycline reduced NOP mRNA, but not protein, level in rat primary microglial cell cultures. In [35S]GTPγS binding assays we have shown that minocycline increases the spinal N/OFQ-stimulated NOP signaling. We suggest that the modulation of the N/OFQ system by minocycline is due to the potentiation of its neuronal antinociceptive activity and weakening of the microglial cell activation. This effect is beneficial for pain relief, and these results suggest new targets for the development of drugs that are effective against neuropathic pain.


European Journal of Pharmacology | 2015

IL-1 receptor antagonist improves morphine and buprenorphine efficacy in a rat neuropathic pain model.

Dominika Pilat; Ewelina Rojewska; Agnieszka M. Jurga; Anna Piotrowska; Wioletta Makuch; Barbara Przewlocka; Joanna Mika

An interesting research and therapeutic problem is the reduced beneficial efficacy of opioids in the treatment of neuropathic pain. The present study sought to investigate the potential role of IL-1 family members in this phenomenon. We studied the time course of changes in IL-1alpha, IL-1beta, IL-1 receptor type I and IL-1 receptor antagonist mRNA and protein levels experienced by rats after chronic constriction injury (CCI) of the sciatic nerve using qRT-PCR and Western blot analysis. In CCI-exposed rats, spinal levels of IL-1alpha mRNA were slightly downregulated on the 7th day, and protein levels were not changed on the 7th and 14th days. Levels of IL-1 receptor antagonist and IL-1 receptor type I were slightly upregulated in the ipsilateral part of the spinal cord on the 7th and 14th days; however, protein levels were not changed at those time points. Interestingly, we observed that IL-1beta mRNA and protein levels were strongly elevated in the ipsilateral part of the dorsal spinal cord on the 7th and 14th days following CCI. Moreover, in rats exposed to a single intrathecal administration of an IL-1 receptor antagonist (100 ng i.t.) on the 7th and 14th day following CCI, symptoms of neuropathic pain were attenuated, and the analgesic effects of morphine (2.5 µg i.t.) and buprenorphine (2.5 µg i.t.) were enhanced. In summary, restoration of the analgesic activity of morphine and buprenorphine by blockade of IL-1 signaling suggests that increased IL-1beta responses may account for the decreased analgesic efficacy of opioids observed in the treatment of neuropathy.


Molecular and Cellular Neuroscience | 2016

Blockade of IL-18 signaling diminished neuropathic pain and enhanced the efficacy of morphine and buprenorphine

Dominika Pilat; Anna Piotrowska; Ewelina Rojewska; Agnieszka M. Jurga; Joanna Ślusarczyk; Wioletta Makuch; Agnieszka Basta-Kaim; Barbara Przewlocka; Joanna Mika

Currently, the low efficacy of antinociceptive drugs for the treatment of neuropathic pain is a major therapeutic problem. Here, we show the potential role of interleukin (IL)-18 signaling in this phenomenon. IL-18 is an important molecule that performs various crucial functions, including the alteration of nociceptive transmission in response to neuropathic pain. We have studied the changes in the mRNA and protein levels (qRT-PCR and Western blot analysis, respectively) of IL-18, IL-18-binding protein (IL-18BP) and the IL-18 receptor (IL-18R) over time in rats following chronic constriction injury (CCI) of the sciatic nerve. Our study demonstrated that the spinal levels of IL-18BP were slightly downregulated at days 7 and 14 in the rats subjected to CCI. In contrast, the IL-18 and IL-18R mRNA expression and protein levels were elevated in the ipsilateral spinal cord on days 2, 7 and 14. Moreover, in rats exposed to a single intrathecal administration of IL-18BP (50 and 100 ng) 7 or 14 days following CCI, symptoms of neuropathic pain were attenuated, and the analgesia pursuant to morphine and buprenorphine (0.5 and 2.5 μg) was enhanced. In summary, the restoration of the analgesic activity of morphine and buprenorphine via the blockade of IL-18 signaling suggests that increased IL-18 pathway may account for the decreased analgesic efficacy of opioids for neuropathic pain.


Anesthesiology | 2016

Microglial Inhibition Influences XCL1/XCR1 Expression and Causes Analgesic Effects in a Mouse Model of Diabetic Neuropathy.

Magdalena Zychowska; Ewelina Rojewska; Anna Piotrowska; Grzegorz Kreiner; Joanna Mika

Background:Recent studies indicated the involvement of some chemokines in the development of diabetic neuropathy; however, participation of the chemokine-C-motif ligand (XCL) subfamily remains unknown. The goal of this study was to examine how microglial inhibition by minocycline hydrochloride (MC) influences chemokine-C-motif ligand 1 (XCL1)–chemokine-C-motif receptor 1 (XCR1)/G protein–coupled receptor 5 expression and the development of allodynia/hyperalgesia in streptozotocin-induced diabetic neuropathy. Methods:The studies were performed on streptozotocin (200 mg/kg, intraperitoneally)-induced mouse diabetic neuropathic pain model and primary glial cell cultures. The MC (30 mg/kg, intraperitoneally) was injected two times daily until day 21. XCL1 and its neutralizing antibody were injected intrathecally, and behavior was evaluated with von Frey and cold plate tests. Quantitative analysis of protein expression of glial markers, XCL1, and/or XCR1 was performed by Western blot and visualized by immunofluorescence. Results:MC treatment diminished allodynia (0.9 ± 0.1 g; n = 7 vs. 3.8 ± 0.7 g; n = 7) and hyperalgesia (6.5 ± 0.6 s; n = 7 vs. 16.5 ± 1 s; n = 7) in the streptozotocin-induced diabetes. Repeated MC administration prevented microglial activation and inhibited the up-regulation of the XCL1/XCR1 levels. XCL1 administration (10 to 500 ng/5 &mgr;l; n = 9) in naive mice enhanced nociceptive transmission, and injections of neutralizing XCL1 (4 to 8 &mgr;g/5 &mgr;l; n = 10) antibody into the mice with diabetic neuropathic pain diminished allodynia/hyperalgesia. Microglia activation evoked in primary microglial cell cultures resulted in enhanced XCL1 release and XCR1 expression. Additionally, double immunofluorescence indicated the widespread coexpression of XCR1-expressing cells with spinal neurons. Conclusions:In diabetic neuropathy, declining levels of XCL1 evoked by microglia inhibition result in the cause of analgesia. The putative mechanism corroborating this finding can be related to lower spinal expression of XCR1 together with the lack of stimulation of these XCR1 receptors, which are localized on neurons.

Collaboration


Dive into the Anna Piotrowska's collaboration.

Top Co-Authors

Avatar

Joanna Mika

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ewelina Rojewska

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wioletta Makuch

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dominika Pilat

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Grzegorz Kreiner

Polish Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge