Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Sahakyan is active.

Publication


Featured researches published by Anna Sahakyan.


Cell Cycle | 2010

Mechanisms of nitric oxide-mediated inhibition of EMT in cancer: Inhibition of the metastasis-inducer Snail and induction of the metastasis-suppressor RKIP

Stavroula Baritaki; Sara Huerta-Yepez; Anna Sahakyan; Iordanis Karagiannides; Kyriaki Bakirtzi; Ali R. Jazirehi; Benjamin Bonavida

The role of nitric oxide (NO) in cancer has been controversial and is based on the levels of NO and the responsiveness of the tumor type. It remains unclear whether NO can inhibit the epithelial to mesenchymal transition (EMT) in cancer cells. EMT induction is mediated, in part, by the constitutive activation of the metastasis-inducer transcription factor, Snail and EMT can be inhibited by the metastasis-suppressor Raf-1 kinase inhibitor protein (RKIP) and E-cadherin. Snail is transcriptionally regulated by NF-κB and in turn, Snail represses RKIP transcription. Hence, we hypothesized that high levels of NO, that inhibit NF-κB activity, may also inhibit Snail and induce RKIP and leading to inhibition of EMT. We show that treatment of human prostate metastatic cell lines with the NO donor, DETANONOate, inhibits EMT and reverses both the mesenchymal phenotype and the cell invasive properties. Further, treatment with DETANONOate inhibits Snail expression and DNA-binding activity in parallel with the upregulation of RKIP and E-cadherin protein levels. The pivotal roles of Snail inhibition and RKIP induction in DETANONOate-mediated inhibition of EMT were corroborated by both Snail silencing by siRNA and by ectopic expression of RKIP. The in vitro findings were validated in vivo in mice bearing PC-3 xenografts and treated with DETANONOate. The present findings show, for the first time, the novel role of high subtoxic concentrations of NO in the inhibition of EMT. Thus, NO donors may exert therapeutic activities in the reversal of EMT and metastasis.


Cell Stem Cell | 2017

Human Naive Pluripotent Stem Cells Model X Chromosome Dampening and X Inactivation

Anna Sahakyan; Rachel Kim; Constantinos Chronis; Shan Sabri; Giancarlo Bonora; Thorold W. Theunissen; Edward Kuoy; Justin Langerman; Amander T. Clark; Rudolf Jaenisch; Kathrin Plath

Naive human embryonic stem cells (hESCs) can be derived from primed hESCs or directly from blastocysts, but their X chromosome state has remained unresolved. Here, we show that the inactive X chromosome (Xi) of primed hESCs was reactivated in naive culture conditions. Like cells of the blastocyst, the resulting naive cells contained two active X chromosomes with XIST expression and chromosome-wide transcriptional dampening and initiated XIST-mediated X inactivation upon differentiation. Both establishment of and exit from the naive state (differentiation) happened via an XIST-negative XaXa intermediate. Together, these findings identify a cell culture system for functionally exploring the two X chromosome dosage compensation processes in early human development: X dampening and X inactivation. However, remaining differences between naive hESCs and embryonic cells related to mono-allelic XIST expression and non-random X inactivation highlight the need for further culture improvement. As the naive state resets Xi abnormalities seen in primed hESCs, it may provide cells better suited for downstream applications.


PLOS ONE | 2012

Engineering HIV-1-resistant T-cells from short-hairpin RNA-expressing hematopoietic stem/progenitor cells in humanized BLT mice.

Gene-Errol Ringpis; Saki Shimizu; Hubert Arokium; Joanna Camba-Colón; Maria V. Carroll; Ruth Cortado; Yiming Xie; Patrick Y. Kim; Anna Sahakyan; Emily L. Lowe; Munetoshi Narukawa; Fadi Kandarian; Bryan P. Burke; Geoff Symonds; Dong Sung An; Irvin S. Y. Chen; Masakazu Kamata

Down-regulation of the HIV-1 coreceptor CCR5 holds significant potential for long-term protection against HIV-1 in patients. Using the humanized bone marrow/liver/thymus (hu-BLT) mouse model which allows investigation of human hematopoietic stem/progenitor cell (HSPC) transplant and immune system reconstitution as well as HIV-1 infection, we previously demonstrated stable inhibition of CCR5 expression in systemic lymphoid tissues via transplantation of HSPCs genetically modified by lentiviral vector transduction to express short hairpin RNA (shRNA). However, CCR5 down-regulation will not be effective against existing CXCR4-tropic HIV-1 and emergence of resistant viral strains. As such, combination approaches targeting additional steps in the virus lifecycle are required. We screened a panel of previously published shRNAs targeting highly conserved regions and identified a potent shRNA targeting the R-region of the HIV-1 long terminal repeat (LTR). Here, we report that human CD4+ T-cells derived from transplanted HSPC engineered to co-express shRNAs targeting CCR5 and HIV-1 LTR are resistant to CCR5- and CXCR4- tropic HIV-1-mediated depletion in vivo. Transduction with the combination vector suppressed CXCR4- and CCR5- tropic viral replication in cell lines and peripheral blood mononuclear cells in vitro. No obvious cytotoxicity or interferon response was observed. Transplantation of combination vector-transduced HSPC into hu-BLT mice resulted in efficient engraftment and subsequent stable gene marking and CCR5 down-regulation in human CD4+ T-cells within peripheral blood and systemic lymphoid tissues, including gut-associated lymphoid tissue, a major site of robust viral replication, for over twelve weeks. CXCR4- and CCR5- tropic HIV-1 infection was effectively inhibited in hu-BLT mouse spleen-derived human CD4+ T-cells ex vivo. Furthermore, levels of gene-marked CD4+ T-cells in peripheral blood increased despite systemic infection with either CXCR4- or CCR5- tropic HIV-1 in vivo. These results demonstrate that transplantation of HSPCs engineered with our combination shRNA vector may be a potential therapy against HIV disease.


Molecular therapy. Nucleic acids | 2015

Engineering Cellular Resistance to HIV-1 Infection In Vivo Using a Dual Therapeutic Lentiviral Vector

Bryan P. Burke; Bernard Levin; Jane Zhang; Anna Sahakyan; Joshua Boyer; Maria V. Carroll; Joanna Camba Colón; Naomi Keech; Valerie Rezek; Gregory Bristol; Erica Eggers; Ruth Cortado; Maureen Boyd; Helen Impey; Saki Shimizu; Emily L. Lowe; Gene-Errol Ringpis; Sohn G. Kim; Dimitrios N. Vatakis; Louis Breton; Jeffrey S. Bartlett; Irvin S. Y. Chen; Scott G. Kitchen; Dong Sung An; Geoff Symonds

We described earlier a dual-combination anti-HIV type 1 (HIV-1) lentiviral vector (LVsh5/C46) that downregulates CCR5 expression of transduced cells via RNAi and inhibits HIV-1 fusion via cell surface expression of cell membrane-anchored C46 antiviral peptide. This combinatorial approach has two points of inhibition for R5-tropic HIV-1 and is also active against X4-tropic HIV-1. Here, we utilize the humanized bone marrow, liver, thymus (BLT) mouse model to characterize the in vivo efficacy of LVsh5/C46 (Cal-1) vector to engineer cellular resistance to HIV-1 pathogenesis. Human CD34+ hematopoietic stem/progenitor cells (HSPC) either nonmodified or transduced with LVsh5/C46 vector were transplanted to generate control and treatment groups, respectively. Control and experimental groups displayed similar engraftment and multilineage hematopoietic differentiation that included robust CD4+ T-cell development. Splenocytes isolated from the treatment group were resistant to both R5- and X4-tropic HIV-1 during ex vivo challenge experiments. Treatment group animals challenged with R5-tropic HIV-1 displayed significant protection of CD4+ T-cells and reduced viral load within peripheral blood and lymphoid tissues up to 14 weeks postinfection. Gene-marking and transgene expression were confirmed stable at 26 weeks post-transplantation. These data strongly support the use of LVsh5/C46 lentiviral vector in gene and cell therapeutic applications for inhibition of HIV-1 infection.


Epigenetics & Chromatin | 2014

The Mbd1-Atf7ip-Setdb1 pathway contributes to the maintenance of X chromosome inactivation

Alissa Minkovsky; Anna Sahakyan; Elyse Rankin-Gee; Giancarlo Bonora; Sanjeet Patel; Kathrin Plath

BackgroundX chromosome inactivation (XCI) is a developmental program of heterochromatin formation that initiates during early female mammalian embryonic development and is maintained through a lifetime of cell divisions in somatic cells. Despite identification of the crucial long non-coding RNA Xist and involvement of specific chromatin modifiers in the establishment and maintenance of the heterochromatin of the inactive X chromosome (Xi), interference with known pathways only partially reactivates the Xi once silencing has been established. Here, we studied ATF7IP (MCAF1), a protein previously characterized to coordinate DNA methylation and histone H3K9 methylation through interactions with the methyl-DNA binding protein MBD1 and the histone H3K9 methyltransferase SETDB1, as a candidate maintenance factor of the Xi.ResultsWe found that siRNA-mediated knockdown of Atf7ip in mouse embryonic fibroblasts (MEFs) induces the activation of silenced reporter genes on the Xi in a low number of cells. Additional inhibition of two pathways known to contribute to Xi maintenance, DNA methylation and Xist RNA coating of the X chromosome, strongly increased the number of cells expressing Xi-linked genes upon Atf7ip knockdown. Despite its functional importance in Xi maintenance, ATF7IP does not accumulate on the Xi in MEFs or differentiating mouse embryonic stem cells. However, we found that depletion of two known repressive biochemical interactors of ATF7IP, MBD1 and SETDB1, but not of other unrelated H3K9 methyltransferases, also induces the activation of an Xi-linked reporter in MEFs.ConclusionsTogether, these data indicate that Atf7ip acts in a synergistic fashion with DNA methylation and Xist RNA to maintain the silent state of the Xi in somatic cells, and that Mbd1 and Setdb1, similar to Atf7ip, play a functional role in Xi silencing. We therefore propose that ATF7IP links DNA methylation on the Xi to SETDB1-mediated H3K9 trimethylation via its interaction with MBD1, and that this function is a crucial feature of the stable silencing of the Xi in female mammalian cells.


Cell Reports | 2017

Human Embryonic Stem Cells Do Not Change Their X Inactivation Status during Differentiation

Sanjeet Patel; Giancarlo Bonora; Anna Sahakyan; Rachel Kim; Constantinos Chronis; Justin Langerman; Sorel Fitz-Gibbon; Liudmilla Rubbi; Rhys J.P. Skelton; Reza Ardehali; Matteo Pellegrini; William E. Lowry; Amander T. Clark; Kathrin Plath

Applications of embryonic stem cells (ESCs) require faithful chromatin changes during differentiation, but the fate of the X chromosome state in differentiating ESCs is unclear. Female human ESC lines either carry two active X chromosomes (XaXa), an Xa and inactive X chromosome with or without XIST RNA coating (XiXIST+Xa;XiXa), or an Xa and an eroded Xi (XeXa) where the Xi no longer expresses XIST RNA and has partially reactivated. Here, we established XiXa, XeXa, and XaXa ESC lines and followed their X chromosome state during differentiation. Surprisingly, we found that the X state pre-existing in primed ESCs is maintained in differentiated cells. Consequently, differentiated XeXa and XaXa cells lacked XIST, did not induce X inactivation, and displayed higher X-linked gene expression than XiXa cells. These results demonstrate that X chromosome dosage compensation is not required for ESC differentiation. Our data imply that XiXIST+Xa ESCs are most suited for downstream applications and show that all other X states are abnormal byproducts of our ESC derivation and propagation method.


Epigenetics & Chromatin | 2015

A high-throughput screen of inactive X chromosome reactivation identifies the enhancement of DNA demethylation by 5-aza-2'-dC upon inhibition of ribonucleotide reductase

Alissa Minkovsky; Anna Sahakyan; Giancarlo Bonora; Robert Damoiseaux; Elizabeth Dimitrova; Liudmilla Rubbi; Matteo Pellegrini; Caius G. Radu; Kathrin Plath

BackgroundDNA methylation is important for the maintenance of the silent state of genes on the inactive X chromosome (Xi). Here, we screened for siRNAs and chemicals that reactivate an Xi-linked reporter in the presence of 5-aza-2′-deoxycytidine (5-aza-2′-dC), an inhibitor of DNA methyltransferase 1, at a concentration that, on its own, is not sufficient for Xi-reactivation.ResultsWe found that inhibition of ribonucleotide reductase (RNR) induced expression of the reporter. RNR inhibition potentiated the effect of 5-aza-2′-dC by enhancing its DNA incorporation, thereby decreasing DNA methylation levels genome-wide. Since both 5-aza-2′-dC and RNR-inhibitors are used in the treatment of hematological malignancies, we treated myeloid leukemia cell lines with 5-aza-2′-dC and the RNR-inhibitor hydroxyurea, and observed synergistic inhibition of cell growth and a decrease in genome-wide DNA methylation.ConclusionsTaken together, our study identifies a drug combination that enhances DNA demethylation by altering nucleotide metabolism. This demonstrates that Xi-reactivation assays can be used to optimize the epigenetic activity of drug combinations.


Philosophical Transactions of the Royal Society B | 2017

Regulation of X-chromosome dosage compensation in human: mechanisms and model systems

Anna Sahakyan; Kathrin Plath; Claire Rougeulle

The human blastocyst forms 5 days after one of the smallest human cells (the sperm) fertilizes one of the largest human cells (the egg). Depending on the sex-chromosome contribution from the sperm, the resulting embryo will either be female, with two X chromosomes (XX), or male, with an X and a Y chromosome (XY). In early development, one of the major differences between XX female and XY male embryos is the conserved process of X-chromosome inactivation (XCI), which compensates gene expression of the two female X chromosomes to match the dosage of the single X chromosome of males. Most of our understanding of the pre-XCI state and XCI establishment is based on mouse studies, but recent evidence from human pre-implantation embryo research suggests that many of the molecular steps defined in the mouse are not conserved in human. Here, we will discuss recent advances in understanding the control of X-chromosome dosage compensation in early human embryonic development and compare it to that of the mouse. This article is part of the themed issue ‘X-chromosome inactivation: a tribute to Mary Lyon’.


Journal of Virological Methods | 2012

A novel HIV-1 reporter virus with a membrane-bound Gaussia princeps luciferase.

Nuttee Suree; Naoya Koizumi; Anna Sahakyan; Saki Shimizu; Dong Sung An

HIV-1 reporter viruses are a critical tool for investigating HIV-1 infection. By having a reporter gene incorporated into the HIV-1 genome, the expressed reporter protein acts as a specific tag, thus enabling specific detection of HIV-1 infected cells. Currently existing HIV-1 reporter viruses utilize reporters for the detection of HIV-1 infected cells by a single assay. A reporter virus enabling the detection of viral particles as well as HIV-1 infected cells by two assays can be more versatile for many applications. In this report, a novel reporter HIV-1 was generated by introducing a membrane-anchored form of the Gaussia princeps luciferase gene (mGluc) upstream of the nef gene in the HIV-1(NL4-3) genome using a picornaviral 2A-like sequence. The resulting HIV-1(NL4-3mGluc) virus expresses G. princeps luciferase efficiently on viral membrane and the cell surface of infected human T cell lines and primary peripheral blood mononuclear cells. This HIV-1 reporter is replication competent and the reporter gene mGluc is expressed during multiple rounds of infection. Importantly, viral particles can be detected by bioluminescence and infected cells can be detected simultaneously by bioluminescence and flow cytometric assays. With the versatility of two sensitive detection methods, this novel luciferase reporter has many applications such as cell-based screening for anti-HIV-1 agents or studies of HIV-1 pathogenicity.


Trends in Cell Biology | 2018

The Role of Xist in X-Chromosome Dosage Compensation

Anna Sahakyan; Yihao Yang; Kathrin Plath

In each somatic cell of a female mammal one X chromosome is transcriptionally silenced via X-chromosome inactivation (XCI), initiating early in development. Although XCI events are conserved in mouse and human postimplantation development, regulation of X-chromosome dosage in preimplantation development occurs differently. In preimplantation development, mouse embryos undergo imprinted form of XCI, yet humans lack imprinted XCI and instead regulate gene expression of both X chromosomes by dampening transcription. The long non-coding RNA Xist/XIST is expressed in mouse and human preimplantation and postimplantation development to orchestrate XCI, but its role in dampening is unclear. In this review, we discuss recent advances in our understanding of the role of Xist in X chromosome dosage compensation in mouse and human.

Collaboration


Dive into the Anna Sahakyan's collaboration.

Top Co-Authors

Avatar

Kathrin Plath

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rachel Kim

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong Sung An

University of California

View shared research outputs
Top Co-Authors

Avatar

Saki Shimizu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bryan P. Burke

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge