Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bryan P. Burke is active.

Publication


Featured researches published by Bryan P. Burke.


PLOS ONE | 2012

Engineering HIV-1-resistant T-cells from short-hairpin RNA-expressing hematopoietic stem/progenitor cells in humanized BLT mice.

Gene-Errol Ringpis; Saki Shimizu; Hubert Arokium; Joanna Camba-Colón; Maria V. Carroll; Ruth Cortado; Yiming Xie; Patrick Y. Kim; Anna Sahakyan; Emily L. Lowe; Munetoshi Narukawa; Fadi Kandarian; Bryan P. Burke; Geoff Symonds; Dong Sung An; Irvin S. Y. Chen; Masakazu Kamata

Down-regulation of the HIV-1 coreceptor CCR5 holds significant potential for long-term protection against HIV-1 in patients. Using the humanized bone marrow/liver/thymus (hu-BLT) mouse model which allows investigation of human hematopoietic stem/progenitor cell (HSPC) transplant and immune system reconstitution as well as HIV-1 infection, we previously demonstrated stable inhibition of CCR5 expression in systemic lymphoid tissues via transplantation of HSPCs genetically modified by lentiviral vector transduction to express short hairpin RNA (shRNA). However, CCR5 down-regulation will not be effective against existing CXCR4-tropic HIV-1 and emergence of resistant viral strains. As such, combination approaches targeting additional steps in the virus lifecycle are required. We screened a panel of previously published shRNAs targeting highly conserved regions and identified a potent shRNA targeting the R-region of the HIV-1 long terminal repeat (LTR). Here, we report that human CD4+ T-cells derived from transplanted HSPC engineered to co-express shRNAs targeting CCR5 and HIV-1 LTR are resistant to CCR5- and CXCR4- tropic HIV-1-mediated depletion in vivo. Transduction with the combination vector suppressed CXCR4- and CCR5- tropic viral replication in cell lines and peripheral blood mononuclear cells in vitro. No obvious cytotoxicity or interferon response was observed. Transplantation of combination vector-transduced HSPC into hu-BLT mice resulted in efficient engraftment and subsequent stable gene marking and CCR5 down-regulation in human CD4+ T-cells within peripheral blood and systemic lymphoid tissues, including gut-associated lymphoid tissue, a major site of robust viral replication, for over twelve weeks. CXCR4- and CCR5- tropic HIV-1 infection was effectively inhibited in hu-BLT mouse spleen-derived human CD4+ T-cells ex vivo. Furthermore, levels of gene-marked CD4+ T-cells in peripheral blood increased despite systemic infection with either CXCR4- or CCR5- tropic HIV-1 in vivo. These results demonstrate that transplantation of HSPCs engineered with our combination shRNA vector may be a potential therapy against HIV disease.


Molecular therapy. Nucleic acids | 2015

Engineering Cellular Resistance to HIV-1 Infection In Vivo Using a Dual Therapeutic Lentiviral Vector

Bryan P. Burke; Bernard Levin; Jane Zhang; Anna Sahakyan; Joshua Boyer; Maria V. Carroll; Joanna Camba Colón; Naomi Keech; Valerie Rezek; Gregory Bristol; Erica Eggers; Ruth Cortado; Maureen Boyd; Helen Impey; Saki Shimizu; Emily L. Lowe; Gene-Errol Ringpis; Sohn G. Kim; Dimitrios N. Vatakis; Louis Breton; Jeffrey S. Bartlett; Irvin S. Y. Chen; Scott G. Kitchen; Dong Sung An; Geoff Symonds

We described earlier a dual-combination anti-HIV type 1 (HIV-1) lentiviral vector (LVsh5/C46) that downregulates CCR5 expression of transduced cells via RNAi and inhibits HIV-1 fusion via cell surface expression of cell membrane-anchored C46 antiviral peptide. This combinatorial approach has two points of inhibition for R5-tropic HIV-1 and is also active against X4-tropic HIV-1. Here, we utilize the humanized bone marrow, liver, thymus (BLT) mouse model to characterize the in vivo efficacy of LVsh5/C46 (Cal-1) vector to engineer cellular resistance to HIV-1 pathogenesis. Human CD34+ hematopoietic stem/progenitor cells (HSPC) either nonmodified or transduced with LVsh5/C46 vector were transplanted to generate control and treatment groups, respectively. Control and experimental groups displayed similar engraftment and multilineage hematopoietic differentiation that included robust CD4+ T-cell development. Splenocytes isolated from the treatment group were resistant to both R5- and X4-tropic HIV-1 during ex vivo challenge experiments. Treatment group animals challenged with R5-tropic HIV-1 displayed significant protection of CD4+ T-cells and reduced viral load within peripheral blood and lymphoid tissues up to 14 weeks postinfection. Gene-marking and transgene expression were confirmed stable at 26 weeks post-transplantation. These data strongly support the use of LVsh5/C46 lentiviral vector in gene and cell therapeutic applications for inhibition of HIV-1 infection.


Molecular therapy. Methods & clinical development | 2014

Preclinical safety and efficacy of an anti-HIV-1 lentiviral vector containing a short hairpin RNA to CCR5 and the C46 fusion inhibitor

Orit Wolstein; Maureen Boyd; Michelle Millington; Helen Impey; Joshua Boyer; Annett Howe; Frederic Delebecque; Kenneth Cornetta; Michael Rothe; Christopher Baum; Tamara Nicolson; Rachel Koldej; Jane Zhang; Naomi Keech; Joanna Camba Colón; Louis Breton; Jeffrey S. Bartlett; Dong Sung An; Irvin S. Y. Chen; Bryan P. Burke; Geoff Symonds

Gene transfer has therapeutic potential for treating HIV-1 infection by generating cells that are resistant to the virus. We have engineered a novel self-inactivating lentiviral vector, LVsh5/C46, using two viral-entry inhibitors to block early steps of HIV-1 cycle. The LVsh5/C46 vector encodes a short hairpin RNA (shRNA) for downregulation of CCR5, in combination with the HIV-1 fusion inhibitor, C46. We demonstrate here the effective delivery of LVsh5/C46 to human T cell lines, peripheral blood mononuclear cells, primary CD4+ T lymphocytes, and CD34+ hematopoietic stem/progenitor cells (HSPC). CCR5-targeted shRNA (sh5) and C46 peptide were stably expressed in the target cells and were able to effectively protect gene-modified cells against infection with CCR5- and CXCR4-tropic strains of HIV-1. LVsh5/C46 treatment was nontoxic as assessed by cell growth and viability, was noninflammatory, and had no adverse effect on HSPC differentiation. LVsh5/C46 could be produced at a scale sufficient for clinical development and resulted in active viral particles with very low mutagenic potential and the absence of replication-competent lentivirus. Based on these in vitro results, plus additional in vivo safety and efficacy data, LVsh5/C46 is now being tested in a phase 1/2 clinical trial for the treatment of HIV-1 disease.


Journal of Virology | 2007

Primary Cell Model for Activation-Inducible Human Immunodeficiency Virus

Bryan P. Burke; Helen J. Brown; Matthew D. Marsden; Gregory Bristol; Dimitrios N. Vatakis; Jerome A. Zack

ABSTRACT Quiescent T lymphocytes containing latent human immunodeficiency virus (HIV) provide a long-lived viral reservoir. This reservoir may be the source of active infection that is reinitiated following the cessation of antiretroviral therapy. Therefore, it is important to understand the mechanisms involved in latent infection to develop new strategies to eliminate the latent HIV reservoir. We have previously demonstrated that latently infected quiescent lymphocytes can be generated during thymopoiesis in vivo in the SCID-hu mouse system. However, there is still a pressing need for an in vitro model of HIV latency in primary human cells. Here, we present a novel in vitro model that recapitulates key aspects of dormant HIV infection. Using an enhanced green fluorescent protein-luciferase fusion protein-containing reporter virus, we have generated a stable infection in primary human CD4+ CD8+ thymocytes in the absence of viral gene expression. T-cell activation induces a >200-fold induction of reporter activity. The induced reporter activity originates from a fully reverse-transcribed and integrated genome. We further demonstrate that this model can be useful to study long terminal repeat regulation, as previously characterized NF-κB response element mutations decrease the activation of viral gene expression. This model can therefore be used to study intricate molecular aspects of activation-inducible HIV infection in primary cells.


Viruses | 2013

CCR5 as a Natural and Modulated Target for Inhibition of HIV

Bryan P. Burke; Maureen Boyd; Helen Impey; Louis Breton; Jeffrey S. Bartlett; Geoff Symonds; Gero Hütter

Human immunodeficiency virus type 1 (HIV-1) infection of target cells requires CD4 and a co-receptor, predominantly the chemokine receptor CCR5. CCR5-delta32 homozygosity results in a truncated protein providing natural protection against HIV infection—this without detrimental effects to the host—and transplantation of CCR5-delta32 stem cells in a patient with HIV (“Berlin patient”) achieved viral eradication. As a more feasible approach gene-modification strategies are being developed to engineer cellular resistance to HIV using autologous cells. We have developed a dual therapeutic anti-HIV lentiviral vector (LVsh5/C46) that down-regulates CCR5 and inhibits HIV-1 fusion via cell surface expression of the gp41-derived peptide, C46. This construct, effective against multiple strains of both R5- and X4-tropic HIV-1, is being tested in Phase I/II trials by engineering HIV-resistant hematopoietic cells.


Immunologic Research | 2010

The use of cell-delivered gene therapy for the treatment of HIV/AIDS

Geoff Symonds; Helen A. Johnstone; Michelle Millington; Maureen Boyd; Bryan P. Burke; Louis Breton

HIV/AIDS is a disease that impairs immune function, primarily by decreasing T-lymphocyte count. Its progression can be contained by highly active antiretroviral therapy (HAART), but there are side effects that can be severe, and the development of resistance often forces the physician to modify the HAART regimen. There are no vaccines available for HIV. An alternative approach that could provide a path to a curative therapy is the use of cell-delivered gene therapy in which an anti-HIV gene(s) is introduced into hematopoietic cells to produce a population that is protected from the effects of HIV. In this paper, we review the field and discuss an approach using a short hairpin RNA to CCR5, an important co-receptor for HIV.


Molecular therapy. Methods & clinical development | 2016

Multilineage polyclonal engraftment of Cal-1 gene-modified cells and in vivo selection after SHIV infection in a nonhuman primate model of AIDS

Christopher W. Peterson; Kevin G. Haworth; Bryan P. Burke; Patricia Polacino; Krystin K. Norman; Jennifer E. Adair; Shiu-Lok Hu; Jeffrey S. Bartlett; Geoff Symonds; Hans-Peter Kiem

We have focused on gene therapy approaches to induce functional cure/remission of HIV-1 infection. Here, we evaluated the safety and efficacy of the clinical grade anti-HIV lentiviral vector, Cal-1, in pigtailed macaques (Macaca nemestrina). Cal-1 animals exhibit robust levels of gene marking in myeloid and lymphoid lineages without measurable adverse events, suggesting that Cal-1 transduction and autologous transplantation of hematopoietic stem cells are safe, and lead to long-term, multilineage engraftment following myeloablative conditioning. Ex vivo, CD4+ cells from transplanted animals undergo positive selection in the presence of simian/human immunodeficiency virus (SHIV). In vivo, Cal-1 gene-marked cells are evident in the peripheral blood and in HIV-relevant tissue sites such as the gastrointestinal tract. Positive selection for gene-marked cells is observed in blood and tissues following SHIV challenge, leading to maintenance of peripheral blood CD4+ T-cell counts in a normal range. Analysis of Cal-1 lentivirus integration sites confirms polyclonal engraftment of gene-marked cells. Following infection, a polyclonal, SHIV-resistant clonal repertoire is established. These findings offer strong preclinical evidence for safety and efficacy of Cal-1, present a new method for tracking protected cells over the course of virus-mediated selective pressure in vivo, and reveal previously unobserved dynamics of virus-dependent T-cell selection.


Virology | 2011

HIV latency is influenced by regions of the viral genome outside of the long terminal repeats and regulatory genes

Matthew D. Marsden; Bryan P. Burke; Jerome A. Zack

We have previously described an in vitro primary thymocyte model for HIV latency that recapitulates several important aspects of latently infected cells obtained from patients. Our original model included a truncated HIV genome expressing only Tat, Rev, and Vpu along with a reporter gene. We have now expanded these studies to include reporter viruses encoding more complete viral genomes. We show here that regions of the viral genome outside of the long terminal repeat promoter and Tat/Rev regulatory genes can substantially affect both the basal level of HIV transcription prior to stimulation, and also the level of viral expression following costimulation via CD3 and CD28 ligation. These differences in latency phenotype between truncated and more complete HIV genomes demonstrate the importance of accessory genes in the context of HIV latency and indicate that care should be taken when interpreting data derived from heavily modified HIV genomes in latency models.


Molecular Therapy | 2015

469. Development and Characterization of GPRG-Based Producer Cell Lines for the Bioproduction of Lentiviral Vectors for HIV Gene Therapy

Chi-Lin Lee; Bryan P. Burke; Jeffrey S. Bartlett

clinical production of self-inactivating lentiviral vectors (SIN-LVs). Here we sought to establish producer cell lines based on GPRG for the production of LVsh5/C46, a SIN-LV currently being assessed in the clinic for treatment of HIV-infected individuals. This vector encodes two viral entry inhibitors; sh5, a short hairpin RNA to the HIV coreceptor CCR5, and C46, a viral fusion inhibitor. We also sought to define the stability of GPRG packaging cell line, the GRPG-based LVsh5/C46 producer cell line, and LVsh5/C46 production following tetracycline induction as required for regulatory filling and clinical application of the GPRG system for bioproduction of LVsh5/C46.


Proceedings of the National Academy of Sciences of the United States of America | 2006

T lineage differentiation from human embryonic stem cells

Zoran Galic; Scott G. Kitchen; Amelia Kacena; Aparna Subramanian; Bryan P. Burke; Ruth Cortado; Jerome A. Zack

Collaboration


Dive into the Bryan P. Burke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong Sung An

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michelle Millington

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Jerome A. Zack

University of California

View shared research outputs
Top Co-Authors

Avatar

Joshua Boyer

University of California

View shared research outputs
Top Co-Authors

Avatar

Ruth Cortado

University of California

View shared research outputs
Top Co-Authors

Avatar

Anna Sahakyan

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge