Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Szekely is active.

Publication


Featured researches published by Anna Szekely.


Nature | 2012

Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells

Alexej Abyzov; Jessica Mariani; Dean Palejev; Ying Zhang; Michael S. Haney; Livia Tomasini; Anthony F. Ferrandino; Lior A. Rosenberg Belmaker; Anna Szekely; Michael Wilson; Arif Kocabas; Nathaniel E. Calixto; Elena L. Grigorenko; Anita Huttner; Katarzyna Chawarska; Sherman M. Weissman; Alexander E. Urban; Mark Gerstein; Flora M. Vaccarino

Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) has been suspected of causing de novo copy number variation. To explore this issue, here we perform a whole-genome and transcriptome analysis of 20 human iPSC lines derived from the primary skin fibroblasts of seven individuals using next-generation sequencing. We find that, on average, an iPSC line manifests two copy number variants (CNVs) not apparent in the fibroblasts from which the iPSC was derived. Using PCR and digital droplet PCR, we show that at least 50% of those CNVs are present as low-frequency somatic genomic variants in parental fibroblasts (that is, the fibroblasts from which each corresponding human iPSC line is derived), and are manifested in iPSC lines owing to their clonal origin. Hence, reprogramming does not necessarily lead to de novo CNVs in iPSCs, because most of the line-manifested CNVs reflect somatic mosaicism in the human skin. Moreover, our findings demonstrate that clonal expansion, and iPSC lines in particular, can be used as a discovery tool to reliably detect low-frequency CNVs in the tissue of origin. Overall, we estimate that approximately 30% of the fibroblast cells have somatic CNVs in their genomes, suggesting widespread somatic mosaicism in the human body. Our study paves the way to understanding the fundamental question of the extent to which cells of the human body normally acquire structural alterations in their DNA post-zygotically.


Cell | 2015

FOXG1-Dependent Dysregulation of GABA/Glutamate Neuron Differentiation in Autism Spectrum Disorders

Jessica Mariani; Gianfilippo Coppola; Ping Zhang; Alexej Abyzov; Lauren Provini; Livia Tomasini; Mariangela Amenduni; Anna Szekely; Dean Palejev; Michael Wilson; Mark Gerstein; Elena L. Grigorenko; Katarzyna Chawarska; Kevin A. Pelphrey; James R. Howe; Flora M. Vaccarino

Autism spectrum disorder (ASD) is a disorder of brain development. Most cases lack a clear etiology or genetic basis, and the difficulty of re-enacting human brain development has precluded understanding of ASD pathophysiology. Here we use three-dimensional neural cultures (organoids) derived from induced pluripotent stem cells (iPSCs) to investigate neurodevelopmental alterations in individuals with severe idiopathic ASD. While no known underlying genomic mutation could be identified, transcriptome and gene network analyses revealed upregulation of genes involved in cell proliferation, neuronal differentiation, and synaptic assembly. ASD-derived organoids exhibit an accelerated cell cycle and overproduction of GABAergic inhibitory neurons. Using RNA interference, we show that overexpression of the transcription factor FOXG1 is responsible for the overproduction of GABAergic neurons. Altered expression of gene network modules and FOXG1 are positively correlated with symptom severity. Our data suggest that a shift toward GABAergic neuron fate caused by FOXG1 is a developmental precursor of ASD.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Modeling human cortical development in vitro using induced pluripotent stem cells.

Jessica Mariani; Maria Vittoria Simonini; Dean Palejev; Livia Tomasini; Gianfilippo Coppola; Anna Szekely; Tamas L. Horvath; Flora M. Vaccarino

Human induced pluripotent stem cells (hiPSCs) are emerging as a tool for understanding human brain development at cellular, molecular, and genomic levels. Here we show that hiPSCs grown in suspension in the presence of rostral neuralizing factors can generate 3D structures containing polarized radial glia, intermediate progenitors, and a spectrum of layer-specific cortical neurons reminiscent of their organization in vivo. The hiPSC-derived multilayered structures express a gene expression profile typical of the embryonic telencephalon but not that of other CNS regions. Their transcriptome is highly enriched in transcription factors controlling the specification, growth, and patterning of the dorsal telencephalon and displays highest correlation with that of the early human cerebral cortical wall at 8–10 wk after conception. Thus, hiPSC are capable of enacting a transcriptional program specifying human telencephalic (pallial) development. This model will allow the study of human brain development as well as disorders of the human cerebral cortex.


PLOS Genetics | 2008

Genome-Wide Occupancy of SREBP1 and Its Partners NFY and SP1 Reveals Novel Functional Roles and Combinatorial Regulation of Distinct Classes of Genes

Brian Reed; Alexandra Charos; Anna Szekely; Sherman M. Weissman; Michael Snyder

The sterol regulatory element-binding protein (SREBP) family member SREBP1 is a critical transcriptional regulator of cholesterol and fatty acid metabolism and has been implicated in insulin resistance, diabetes, and other diet-related diseases. We globally identified the promoters occupied by SREBP1 and its binding partners NFY and SP1 in a human hepatocyte cell line using chromatin immunoprecipitation combined with genome tiling arrays (ChIP-chip). We find that SREBP1 occupies the promoters of 1,141 target genes involved in diverse biological pathways, including novel targets with roles in lipid metabolism and insulin signaling. We also identify a conserved SREBP1 DNA-binding motif in SREBP1 target promoters, and we demonstrate that many SREBP1 target genes are transcriptionally activated by treatment with insulin and glucose using gene expression microarrays. Finally, we show that SREBP1 cooperates extensively with NFY and SP1 throughout the genome and that unique combinations of these factors target distinct functional pathways. Our results provide insight into the regulatory circuitry in which SREBP1 and its network partners coordinate a complex transcriptional response in the liver with cues from the diet.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Dynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequencing

Jia Qian Wu; Lukas Habegger; Parinya Noisa; Anna Szekely; Caihong Qiu; Stephen K. Hutchison; Debasish Raha; Michael Egholm; Haifan Lin; Sherman M. Weissman; Wei Cui; Mark Gerstein; Michael Snyder

To examine the fundamental mechanisms governing neural differentiation, we analyzed the transcriptome changes that occur during the differentiation of hESCs into the neural lineage. Undifferentiated hESCs as well as cells at three stages of early neural differentiation—N1 (early initiation), N2 (neural progenitor), and N3 (early glial-like)—were analyzed using a combination of single read, paired-end read, and long read RNA sequencing. The results revealed enormous complexity in gene transcription and splicing dynamics during neural cell differentiation. We found previously unannotated transcripts and spliced isoforms specific for each stage of differentiation. Interestingly, splicing isoform diversity is highest in undifferentiated hESCs and decreases upon differentiation, a phenomenon we call isoform specialization. During neural differentiation, we observed differential expression of many types of genes, including those involved in key signaling pathways, and a large number of extracellular receptors exhibit stage-specific regulation. These results provide a valuable resource for studying neural differentiation and reveal insights into the mechanisms underlying in vitro neural differentiation of hESCs, such as neural fate specification, neural progenitor cell identity maintenance, and the transition from a predominantly neuronal state into one with increased gliogenic potential.


Molecular and Cellular Biology | 2005

Werner protein protects nonproliferating cells from oxidative DNA damage

Anna Szekely; Franziska Bleichert; Astrid Nümann; Stephen Van Komen; Elisabeth Manasanch; Abdelhakim Ben Nasr; Allon Canaan; Sherman M. Weissman

ABSTRACT Werner syndrome, caused by mutations of the WRN gene, mimics many changes of normal aging. Although roles for WRN protein in DNA replication, recombination, and telomere maintenance have been suggested, the pathology of rapidly dividing cells is not a feature of Werner syndrome. To identify cellular events that are specifically vulnerable to WRN deficiency, we used RNA interference (RNAi) to knockdown WRN or BLM (the RecQ helicase mutated in Bloom syndrome) expression in primary human fibroblasts. Withdrawal of WRN or BLM produced accelerated cellular senescence phenotype and DNA damage response in normal fibroblasts, as evidenced by induction of γH2AX and 53BP1 nuclear foci. After WRN depletion, the induction of these foci was seen most prominently in nondividing cells. Growth in physiological (3%) oxygen or in the presence of an antioxidant prevented the development of the DNA damage foci in WRN-depleted cells, whereas acute oxidative stress led to inefficient repair of the lesions. Furthermore, WRN RNAi-induced DNA damage was suppressed by overexpression of the telomere-binding protein TRF2. These conditions, however, did not prevent the DNA damage response in BLM-ablated cells, suggesting a distinct role for WRN in DNA homeostasis in vivo. Thus, manifestations of Werner syndrome may reflect an impaired ability of slowly dividing cells to limit oxidative DNA damage.


American Journal of Medical Genetics Part A | 2006

Karyotype–phenotype insights from 11q14.1-q23.2 interstitial deletions: FZD4 haploinsufficiency and exudative vitreoretinopathy in a patient with a complex chromosome rearrangement†

Peining Li; Hui Z. Zhang; Shannon Huff; Manjunath Nimmakayalu; Mazin B. Qumsiyeh; Jingwei Yu; Anna Szekely; Tian Xu; Barbara R. Pober

We detected a unique de novo complex chromosome rearrangement (CCR) in a patient with multiple abnormalities including growth retardation, facial anomalies, exudative vitreoretinopathy (EVR), cleft palate, and minor digital anomalies. Cytogenetic analysis, fluorescent in situ hybridization, and microsatellite genotyping showed a reciprocal translocation between chromosomes 5 and 8, and a complex translocation‐deletion‐inversion process in the formation of derivative chromosomes 11 and 16. High‐density whole‐genome oligonucleotide array comparative genomic hybridization (oaCGH) defined a 35‐megabase interstitial deletion of 11q14.1‐q23.2 and a 1 megabase deletion of 16q22.3‐q23.1. The Frizzled‐4 (FZD4) gene is located within this 11q deletion. Parental studies and sequencing analysis confirmed that the patient was hemizygous for FZD4 due to the loss of a paternal allele on the derivative chromosome 11. Mutations in FZD4 are known to cause autosomal dominant exudative vitreoretinopathy (EVR1). Our patients findings suggest that haploinsufficiency of the FZD4 gene product can also be a disease‐causing mechanism for EVR1. We reviewed the clinical manifestations of 23 cases with 11q14‐q23 interstitial deletions, with particular scrutiny of the present case and four reported cases characterized by molecular cytogenetics. These findings were used to construct a regional deletion map consisting of a haplosufficient segment at 11q14.3, a flanking centromeric segment at 11q14.1‐q14.2, and a flanking telomeric segment at 11q21‐q23.3. We propose that deletions of the FZD4 gene located within the centromeric segment cause retinal dysgenesis, while deletions within the telomeric segment account for dysmorphic craniofacial features, growth and mental retardation, and mild digital anomalies. These results provide insight into karyotype–phenotype correlations and prompt a rational analytic approach to cases with interstitial deletions of the 11q14‐q23 region.


Genome Research | 2012

A highly integrated and complex PPARGC1A transcription factor binding network in HepG2 cells

Alexandra Charos; Brian Reed; Debasish Raha; Anna Szekely; Sherman M. Weissman; Michael Snyder

PPARGC1A is a transcriptional coactivator that binds to and coactivates a variety of transcription factors (TFs) to regulate the expression of target genes. PPARGC1A plays a pivotal role in regulating energy metabolism and has been implicated in several human diseases, most notably type II diabetes. Previous studies have focused on the interplay between PPARGC1A and individual TFs, but little is known about how PPARGC1A combines with all of its partners across the genome to regulate transcriptional dynamics. In this study, we describe a core PPARGC1A transcriptional regulatory network operating in HepG2 cells treated with forskolin. We first mapped the genome-wide binding sites of PPARGC1A using chromatin-IP followed by high-throughput sequencing (ChIP-seq) and uncovered overrepresented DNA sequence motifs corresponding to known and novel PPARGC1A network partners. We then profiled six of these site-specific TF partners using ChIP-seq and examined their network connectivity and combinatorial binding patterns with PPARGC1A. Our analysis revealed extensive overlap of targets including a novel link between PPARGC1A and HSF1, a TF regulating the conserved heat shock response pathway that is misregulated in diabetes. Importantly, we found that different combinations of TFs bound to distinct functional sets of genes, thereby helping to reveal the combinatorial regulatory code for metabolic and other cellular processes. In addition, the different TFs often bound near the promoters and coding regions of each others genes suggesting an intricate network of interdependent regulation. Overall, our study provides an important framework for understanding the systems-level control of metabolic gene expression in humans.


Journal of Child Psychology and Psychiatry | 2011

Annual Research Review: The Promise of Stem Cell Research for Neuropsychiatric Disorders.

Flora M. Vaccarino; Alexander E. Urban; Hanna E. Stevens; Anna Szekely; Alexej Abyzov; Elena L. Grigorenko; Mark Gerstein; Sherman M. Weissman

The study of the developing brain has begun to shed light on the underpinnings of both early and adult onset neuropsychiatric disorders. Neuroimaging of the human brain across developmental time points and the use of model animal systems have combined to reveal brain systems and gene products that may play a role in autism spectrum disorders, attention deficit hyperactivity disorder, obsessive compulsive disorder and many other neurodevelopmental conditions. However, precisely how genes may function in human brain development and how they interact with each other leading to psychiatric disorders is unknown. Because of an increasing understanding of neural stem cells and how the nervous system subsequently develops from these cells, we have now the ability to study disorders of the nervous system in a new way - by rewinding and reviewing the development of human neural cells. Induced pluripotent stem cells (iPSCs), developed from mature somatic cells, have allowed the development of specific cells in patients to be observed in real time. Moreover, they have allowed some neuronal-specific abnormalities to be corrected with pharmacological intervention in tissue culture. These exciting advances based on the use of iPSCs hold great promise for understanding, diagnosing and, possibly, treating psychiatric disorders. Specifically, examination of iPSCs from typically developing individuals will reveal how basic cellular processes and genetic differences contribute to individually unique nervous systems. Moreover, by comparing iPSCs from typically developing individuals and patients, differences at stem cell stages, through neural differentiation, and into the development of functional neurons may be identified that will reveal opportunities for intervention. The application of such techniques to early onset neuropsychiatric disorders is still on the horizon but has become a reality of current research efforts as a consequence of the revelations of many years of basic developmental neurobiological science.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Functional genomic screen of human stem cell differentiation reveals pathways involved in neurodevelopment and neurodegeneration

Ying Zhang; Vincent P. Schulz; Brian Reed; Zheng Wang; Xinghua Pan; Jessica Mariani; Ghia Euskirchen; Michael Snyder; Flora M. Vaccarino; Natalia Ivanova; Sherman M. Weissman; Anna Szekely

Human embryonic stem cells (hESCs) can be induced and differentiated to form a relatively homogeneous population of neuronal precursors in vitro. We have used this system to screen for genes necessary for neural lineage development by using a pooled human short hairpin RNA (shRNA) library screen and massively parallel sequencing. We confirmed known genes and identified several unpredicted genes with interrelated functions that were specifically required for the formation or survival of neuronal progenitor cells without interfering with the self-renewal capacity of undifferentiated hESCs. Among these are several genes that have been implicated in various neurodevelopmental disorders (i.e., brain malformations, mental retardation, and autism). Unexpectedly, a set of genes mutated in late-onset neurodegenerative disorders and with roles in the formation of RNA granules were also found to interfere with neuronal progenitor cell formation, suggesting their functional relevance in early neurogenesis. This study advances the feasibility and utility of using pooled shRNA libraries in combination with next-generation sequencing for a high-throughput, unbiased functional genomic screen. Our approach can also be used with patient-specific human-induced pluripotent stem cell-derived neural models to obtain unparalleled insights into developmental and degenerative processes in neurological or neuropsychiatric disorders with monogenic or complex inheritance.

Collaboration


Dive into the Anna Szekely's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge