Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annamaria Porcelli is active.

Publication


Featured researches published by Annamaria Porcelli.


The Journal of Neuroscience | 2011

Stress-Related Methylation of the Catechol-O-Methyltransferase Val158 Allele Predicts Human Prefrontal Cognition and Activity

Gianluca Ursini; Valentina Bollati; Leonardo Fazio; Annamaria Porcelli; Luisa Iacovelli; Assia Catalani; Lorenzo Sinibaldi; Barbara Gelao; Raffaella Romano; Antonio Rampino; Paolo Taurisano; Marina Mancini; Annabella Di Giorgio; Teresa Popolizio; Andrea Baccarelli; Antonio De Blasi; Giuseppe Blasi; Alessandro Bertolino

DNA methylation at CpG dinucleotides is associated with gene silencing, stress, and memory. The catechol-O-methyltransferase (COMT) Val158 allele in rs4680 is associated with differential enzyme activity, stress responsivity, and prefrontal activity during working memory (WM), and it creates a CpG dinucleotide. We report that methylation of the Val158 allele measured from peripheral blood mononuclear cells (PBMCs) of Val/Val humans is associated negatively with lifetime stress and positively with WM performance; it interacts with stress to modulate prefrontal activity during WM, such that greater stress and lower methylation are related to reduced cortical efficiency; and it is inversely related to mRNA expression and protein levels, potentially explaining the in vivo effects. Finally, methylation of COMT in prefrontal cortex and that in PBMCs of rats are correlated. The relationship of methylation of the COMT Val158 allele with stress, gene expression, WM performance, and related brain activity suggests that stress-related methylation is associated with silencing of the gene, which partially compensates the physiological role of the high-activity Val allele in prefrontal cognition and activity. Moreover, these results demonstrate how stress-related DNA methylation of specific functional alleles impacts directly on human brain physiology beyond sequence variation.


American Journal of Psychiatry | 2013

Association of GSK-3β genetic variation with GSK-3β expression, prefrontal cortical thickness, prefrontal physiology, and schizophrenia

Giuseppe Blasi; Francesco Napolitano; Gianluca Ursini; Annabella Di Giorgio; Grazia Caforio; Paolo Taurisano; Leonardo Fazio; Barbara Gelao; Maria Teresa Attrotto; Lucia Colagiorgio; Giovanna Todarello; Francesco Piva; Apostolos Papazacharias; Rita Masellis; Marina Mancini; Annamaria Porcelli; Raffaella Romano; Antonio Rampino; Tiziana Quarto; Matteo Giulietti; Barbara K. Lipska; Joel E. Kleinman; Teresa Popolizio; Daniel R. Weinberger; Alessandro Usiello; Alessandro Bertolino

OBJECTIVE Glycogen synthase kinase 3β (GSK-3β) is an enzyme implicated in neurodevelopmental processes with a broad range of substrates mediating several canonical signaling pathways in the brain. The authors investigated the association of variation in the GSK-3β gene with a series of progressively more complex phenotypes of relevance to schizophrenia, a neurodevelopmental disorder with strong genetic risk. METHOD Based on computer predictions, the authors investigated in humans the association of GSK-3β functional variation with 1) GSK-3β mRNA expression from postmortem prefrontal cortex, 2) GSK-3β and β-catenin protein expression from peripheral blood mononuclear cells (PBMCs), 3) prefrontal imaging phenotypes, and 4) diagnosis of schizophrenia. RESULTS Consistent with predictions, the TT genotype of a single-nucleotide polymorphism in GSK-3β (rs12630592) was associated with reduced GSK-3β mRNA from postmortem prefrontal cortex. Furthermore, this genotype was associated with GSK-3β protein expression and kinase activity, as well as with downstream effects on β-catenin expression in PBMCs. Finally, the TT genotype was associated with attenuated functional MRI prefrontal activity, reduced prefrontal cortical thickness, and diagnosis of schizophrenia. CONCLUSIONS These results suggest that GSK-3β variation is implicated in multiple phenotypes relevant to schizophrenia.


Neuropsychopharmacology | 2015

Functional genetic variation of the cannabinoid receptor 1 and cannabis use interact on prefrontal connectivity and related working memory behavior

Marco Colizzi; Leonardo Fazio; Laura Ferranti; Annamaria Porcelli; Rita Masellis; Daniela Marvulli; Aurora Bonvino; Gianluca Ursini; Giuseppe Blasi; Alessandro Bertolino

Cannabinoid signaling is involved in different brain functions and it is mediated by the cannabinoid receptor 1 (CNR1), which is encoded by the CNR1 gene. Previous evidence suggests an association between cognition and cannabis use. The logical interaction between genetically determined cannabinoid signaling and cannabis use has not been determined. Therefore, we investigated whether CNR1 variation predicts CNR1 prefrontal mRNA expression in postmortem prefrontal human tissue. Then, we studied whether functional variation in CNR1 and cannabis exposure interact in modulating prefrontal function and related behavior during working memory processing. Thus, 208 healthy subjects (113 males) were genotyped for the relevant functional SNP and were evaluated for cannabis use by the Cannabis Experience Questionnaire. All individuals performed the 2-back working memory task during functional magnetic resonance imaging. CNR1 rs1406977 was associated with prefrontal mRNA and individuals carrying a G allele had reduced CNR1 prefrontal mRNA levels compared with AA subjects. Moreover, functional connectivity MRI demonstrated that G carriers who were also cannabis users had greater functional connectivity in the left ventrolateral prefrontal cortex and reduced working memory behavioral accuracy during the 2-back task compared with the other groups. Overall, our results indicate that the deleterious effects of cannabis use are more evident on a specific genetic background related to its receptor expression.


Epigenetics | 2016

BDNF rs6265 methylation and genotype interact on risk for schizophrenia

Gianluca Ursini; Tommaso Cavalleri; Leonardo Fazio; Tiziana Angrisano; Luisa Iacovelli; Annamaria Porcelli; Giancarlo Maddalena; Giovanna Punzi; Marina Mancini; Barbara Gelao; Raffaella Romano; Rita Masellis; Francesca Calabrese; Antonio Rampino; Paolo Taurisano; Annabella Di Giorgio; Simona Keller; Letizia Tarantini; Lorenzo Sinibaldi; Tiziana Quarto; Teresa Popolizio; Grazia Caforio; Giuseppe Blasi; Marco Riva; Antonio De Blasi; Lorenzo Chiariotti; Valentina Bollati; Alessandro Bertolino

Abstract Epigenetic mechanisms can mediate gene-environment interactions relevant for complex disorders. The BDNF gene is crucial for development and brain plasticity, is sensitive to environmental stressors, such as hypoxia, and harbors the functional SNP rs6265 (Val66Met), which creates or abolishes a CpG dinucleotide for DNA methylation. We found that methylation at the BDNF rs6265 Val allele in peripheral blood of healthy subjects is associated with hypoxia-related early life events (hOCs) and intermediate phenotypes for schizophrenia in a distinctive manner, depending on rs6265 genotype: in ValVal individuals increased methylation is associated with exposure to hOCs and impaired working memory (WM) accuracy, while the opposite is true for ValMet subjects. Also, rs6265 methylation and hOCs interact in modulating WM-related prefrontal activity, another intermediate phenotype for schizophrenia, with an analogous opposite direction in the 2 genotypes. Consistently, rs6265 methylation has a different association with schizophrenia risk in ValVals and ValMets. The relationships of methylation with BDNF levels and of genotype with BHLHB2 binding likely contribute to these opposite effects of methylation. We conclude that BDNF rs6265 methylation interacts with genotype to bridge early environmental exposures to adult phenotypes, relevant for schizophrenia. The study of epigenetic changes in regions containing genetic variation relevant for human diseases may have beneficial implications for the understanding of how genes are actually translated into phenotypes.


Psychopharmacology | 2014

DRD2 genotype predicts prefrontal activity during working memory after stimulation of D2 receptors with bromocriptine

Barbara Gelao; Leonardo Fazio; Pierluigi Selvaggi; Annabella Di Giorgio; Paolo Taurisano; Tiziana Quarto; Raffaella Romano; Annamaria Porcelli; Marina Mancini; Rita Masellis; Gianluca Ursini; Giuseppe De Simeis; Grazia Caforio; Laura Ferranti; Luciana Lo Bianco; Antonio Rampino; Orlando Todarello; Teresa Popolizio; Giuseppe Blasi; Alessandro Bertolino

RationalePharmacological stimulation of D2 receptors modulates prefrontal neural activity associated with working memory (WM) processing. The T allele of a functional single-nucleotide polymorphism (SNP) within DRD2 (rs1076560 G > T) predicts reduced relative expression of the D2S receptor isoform and less efficient neural cortical responses during WM tasks.ObjectiveWe used functional MRI to test the hypothesis that DRD2 rs1076560 genotype interacts with pharmacological stimulation of D2 receptors with bromocriptine on prefrontal responses during different loads of a spatial WM task (N-Back).MethodsFifty-three healthy subjects (38 GG and 15 GT) underwent two 3-T functional MRI scans while performing the 1-, 2- and 3-Back versions of the N-Back WM task. Before the imaging sessions, either bromocriptine or placebo was administered to all subjects in a counterbalanced order. A factorial repeated-measures ANOVA within SPM8 (p < 0.05, family-wise error corrected) was used.ResultsOn bromocriptine, GG subjects had reduced prefrontal activity at 3-Back together with a significant decrement in performance, compared with placebo. On the other hand, GT subjects had lower activity for the same level of performance at 1-Back but a trend for reduced behavioral performance in the face of unchanged activity at 2-Back.ConclusionsThese results indicate that bromocriptine stimulation modulates prefrontal activity in terms of disengagement or of efficiency depending on DRD2 genotype and working memory load.


Frontiers in Behavioral Neuroscience | 2014

Prefronto-striatal physiology is associated with schizotypy and is modulated by a functional variant of DRD2.

Paolo Taurisano; Raffaella Romano; Marina Mancini; Annabella Di Giorgio; Linda A. Antonucci; Leonardo Fazio; Antonio Rampino; Tiziana Quarto; Barbara Gelao; Annamaria Porcelli; Apostolos Papazacharias; Gianluca Ursini; Grazia Caforio; Rita Masellis; Artor Niccoli-Asabella; Orlando Todarello; Teresa Popolizio; Giuseppe Rubini; Giuseppe Blasi; Alessandro Bertolino

“Schizotypy” is a latent organization of personality related to the genetic risk for schizophrenia. Some evidence suggests that schizophrenia and schizotypy share some biological features, including a link to dopaminergic D2 receptor signaling. A polymorphism in the D2 gene (DRD2 rs1076560, guanine > thymine (G > T)) has been associated with the D2 short/long isoform expression ratio, as well as striatal dopamine signaling and prefrontal cortical activity during different cognitive operations, which are measures that are altered in patients with schizophrenia. Our aim is to determine the association of schizotypy scores with the DRD2 rs1076560 genotype in healthy individuals and their interaction with prefrontal activity during attention and D2 striatal signaling. A total of 83 healthy subjects were genotyped for DRD2 rs1076560 and completed the Schizotypal Personality Questionnaire (SPQ). Twenty-six participants underwent SPECT with [123I]IBZM D2 receptor radiotracer, while 68 performed an attentional control task during fMRI. We found that rs1076560 GT subjects had greater SPQ scores than GG individuals. Moreover, the interaction between schizotypy and the GT genotype predicted prefrontal activity and related attentional behavior, as well as striatal binding of IBZM. No interaction was found in GG individuals. These results suggest that rs1076560 GT healthy individuals are prone to higher levels of schizotypy, and that the interaction between rs1076560 and schizotypy scores modulates phenotypes related to the pathophysiology of schizophrenia, such as prefrontal activity and striatal dopamine signaling. These results provide systems-level qualitative evidence for mapping the construct of schizotypy in healthy individuals onto the schizophrenia continuum.


Nature Medicine | 2018

Convergence of placenta biology and genetic risk for schizophrenia

Gianluca Ursini; Giovanna Punzi; Qiang Chen; Stefano Marenco; Joshua F. Robinson; Annamaria Porcelli; Emily G. Hamilton; Marina Mitjans; Giancarlo Maddalena; Martin Begemann; Jan Seidel; Hidenaga Yanamori; Andrew E. Jaffe; Karen Faith Berman; Michael F. Egan; Richard E. Straub; Carlo Colantuoni; Giuseppe Blasi; Ryota Hashimoto; Dan Rujescu; Hannelore Ehrenreich; Alessandro Bertolino; Daniel R. Weinberger

Defining the environmental context in which genes enhance disease susceptibility can provide insight into the pathogenesis of complex disorders. We report that the intra-uterine environment modulates the association of schizophrenia with genomic risk (in this study, genome-wide association study–derived polygenic risk scores (PRSs)). In independent samples from the United States, Italy, and Germany, the liability of schizophrenia explained by PRS is more than five times greater in the presence of early-life complications (ELCs) compared with their absence. Patients with ELC histories have significantly higher PRS than patients without ELC histories, which is confirmed in additional samples from Germany and Japan. The gene set composed of schizophrenia loci that interact with ELCs is highly expressed in placenta, is differentially expressed in placentae from complicated in comparison with normal pregnancies, and is differentially upregulated in placentae from male compared with female offspring. Pathway analyses reveal that genes driving the PRS-ELC interaction are involved in cellular stress response; genes that do not drive such interaction implicate orthogonal biological processes (for example, synaptic function). We conclude that a subset of the most significant genetic variants associated with schizophrenia converge on a developmental trajectory sensitive to events that affect the placental response to stress, which may offer insights into sex biases and primary prevention.Early-life complications modulate the association of genomic risk and schizophrenia.


Cortex | 2016

Prefrontal activity during working memory is modulated by the interaction of variation in CB1 and COX2 coding genes and correlates with frequency of cannabis use

Paolo Taurisano; Linda A. Antonucci; Leonardo Fazio; Antonio Rampino; Raffaella Romano; Annamaria Porcelli; Rita Masellis; Marco Colizzi; Tiziana Quarto; Silvia Torretta; Annabella Di Giorgio; Giulio Pergola; Alessandro Bertolino; Giuseppe Blasi

The CB1 cannabinoid receptor is targeted in the brain by endocannabinoids under physiological conditions as well as by delta9-tetrahydrocannabinol under cannabis use. Furthermore, its signaling appears to affect brain cognitive processing. Recent findings highlight a crucial role of cyclooxygenase-2 (COX-2) in the mechanism of intraneuronal CB1 signaling transduction, while others indicate that two single nucleotide polymorphisms (SNPs) (rs1406977 and rs20417) modulate expression of CB1 (CNR1) and COX-2 (PTGS2) coding genes, respectively. Here, our aim was to use fMRI to investigate in healthy humans whether these SNPs interact in modulating prefrontal activity during working memory processing and if this modulation is linked with cannabis use. We recruited 242 healthy subjects genotyped for CNR1 rs1406977 and PTGS2 rs20417 that performed the N-back working memory task during fMRI and were interviewed using the Cannabis Experience Questionnaire (CEQ). We found that the interaction between CNR1 rs1406977 and PTGS2 rs20417 is associated with dorsolateral prefrontal cortex (DLPFC) activity such that specific genotype configurations (CNR1 C carriers/PTGS2 C carriers and CNR1 TT/PTGS2 GG) predict lower cortical response versus others in spite of similar behavioral accuracy. Furthermore, DLPFC activity in the cluster associated with the CNR1 by PTGS2 interaction was negatively correlated with behavioral efficiency and positively correlated with frequency of cannabis use in cannabis users. These results suggest that a genetically modulated balancing of signaling within the CB1-COX-2 pathway may reflect on more or less efficient patterns of prefrontal activity during working memory. Frequency of cannabis use may be a factor for further modulation of CNR1/PTGS2-mediated cortical processing associated with this cognitive process.


Translational Psychiatry | 2016

Ankyrin-3 as a molecular marker of early-life stress and vulnerability to psychiatric disorders.

Alessia Luoni; Renaud Massart; Vanessa Nieratschker; Z Nemoda; Giuseppe Blasi; Maria Gilles; Stephanie H. Witt; M J Suderman; Stephen J. Suomi; Annamaria Porcelli; G Rizzo; Leonardo Fazio; Silvia Torretta; Antonio Rampino; Alessandra Berry; Peter Gass; Francesca Cirulli; M. Rietschel; Alessandro Bertolino; Michael Deuschle; Moshe Szyf; Marco Riva

Exposure to early-life stress (ELS) may heighten the risk for psychopathology at adulthood. Here, in order to identify common genes that may keep the memory of ELS through changes in their methylation status, we intersected methylome analyses performed in different tissues and time points in rats, non-human primates and humans, all characterized by ELS. We identified Ankyrin-3 (Ank3), a scaffolding protein with a strong genetic association for psychiatric disorders, as a gene persistently affected by stress exposure. In rats, Ank3 methylation and mRNA changes displayed a specific temporal profile during the postnatal development. Moreover, exposure to prenatal stress altered the interaction of ankyrin-G, the protein encoded by Ank3 enriched in the post-synaptic compartment, with PSD95. Notably, to model in humans a gene by early stress interplay on brain phenotypes during cognitive performance, we demonstrated an interaction between functional variation in Ank3 gene and obstetric complications on working memory in healthy adult subjects. Our data suggest that alterations of Ank3 expression and function may contribute to the effects of ELS on the development of psychiatric disorders.


Schizophrenia Research | 2016

Association of familial risk for schizophrenia with thalamic and medial prefrontal functional connectivity during attentional control

Linda A. Antonucci; Paolo Taurisano; Leonardo Fazio; Barbara Gelao; Raffaella Romano; Tiziana Quarto; Annamaria Porcelli; Marina Mancini; Annabella Di Giorgio; Grazia Caforio; Giulio Pergola; Teresa Popolizio; Alessandro Bertolino; Giuseppe Blasi

Anomalies in behavioral correlates of attentional processing and related brain activity are crucial correlates of schizophrenia and associated with familial risk for this brain disorder. However, it is not clear how brain functional connectivity during attentional processes is key for schizophrenia and linked with trait vs. state related variables. To address this issue, we investigated patterns of functional connections during attentional control in healthy siblings of patients with schizophrenia, who share with probands genetic features but not variables related to the state of the disorder. 356 controls, 55 patients with schizophrenia on stable treatment with antipsychotics and 40 healthy siblings of patients with this brain disorder underwent the Variable Attentional Control (VAC) task during fMRI. Independent Component Analysis (ICA) is allowed to identify independent components (IC) of BOLD signal recorded during task performance. Results indicated reduced connectivity strength in patients with schizophrenia as well as in their healthy siblings in left thalamus within an attentional control component and greater connectivity in right medial prefrontal cortex (PFC) within the so-called Default Mode Network (DMN) compared to healthy individuals. These results suggest a relationship between familial risk for schizophrenia and brain functional networks during attentional control, such that this biological phenotype may be considered a useful intermediate phenotype in order to link genes effects to aspects of the pathophysiology of this brain disorder.

Collaboration


Dive into the Annamaria Porcelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annabella Di Giorgio

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge