Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne E. Carlson is active.

Publication


Featured researches published by Anne E. Carlson.


Proceedings of the National Academy of Sciences of the United States of America | 2003

CatSper1 required for evoked Ca2+ entry and control of flagellar function in sperm

Anne E. Carlson; Ruth E. Westenbroek; Timothy A. Quill; Dejian Ren; David E. Clapham; Bertil Hille; David L. Garbers; Donner F. Babcock

CatSper family proteins are putative ion channels expressed exclusively in membranes of the sperm flagellum and required for male fertility. Here, we show that mouse CatSper1 is essential for depolarization-evoked Ca2+ entry and for hyperactivated movement, a key flagellar function. CatSper1 is not needed for other developmental landmarks, including regional distributions of CaV1.2, CaV2.2, and CaV2.3 ion channel proteins, the cAMP-mediated activation of motility by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{HCO}}_{3}^{-}\end{equation*}\end{document}, and the protein phosphorylation cascade of sperm capacitation. We propose that CatSper1 functions as a voltage-gated Ca2+ channel that controls Ca2+ entry to mediate the hyperactivated motility needed late in the preparation of sperm for fertilization.


Development | 2003

Bicarbonate actions on flagellar and Ca2+ -channel responses: initial events in sperm activation.

Gunther Wennemuth; Anne E. Carlson; Andrew J. Harper; Donner F. Babcock

At mating, mammalian sperm are diluted in the male and female reproductive fluids, which brings contact with HCO3- and initiates several cellular responses. We have identified and studied two of the most rapid of these responses. Stop-motion imaging and flagellar waveform analysis show that for mouse epididymal sperm in vitro, the resting flagellar beat frequency is 2-3 Hz at 22-25°C. Local perfusion with HCO3- produces a robust, reversible acceleration to 7 Hz or more. At 15 mM the action of HCO3- begins within 5 seconds and is near-maximal by 30 seconds. The half-times of response are 8.8±0.2 seconds at 15 mM HCO3- and 17.5±0.4 seconds at 1 mM HCO3-. Removal of external HCO3- allows a slow return to basal beat frequency over ∼10 minutes. Increases in beat symmetry accompany the accelerating action of HCO3-. As in our past work, HCO3- also facilitates opening of voltagegated Ca2+ channels, increasing the depolarization-evoked rate of rise of intracellular Ca2+ concentration by more than fivefold. This action also is detectable at 1 mM HCO3- and occurs with an apparent halftime of ∼60 seconds at 15 mM HCO3-. The dual actions of HCO3- respond similarly to pharmacological intervention. Thus, the phosphodiesterase inhibitor IBMX promotes the actions of HCO3- on flagellar and channel function, and the protein kinase A inhibitor H89 blocks these actions. In addition, a 30 minute incubation with 60 μM cAMP acetoxylmethyl ester increases flagellar beat frequency to nearly 7 Hz and increases the evoked rates of rise of intracellular Ca2+ concentration from 17±4 to 41±6 nM second-1. However, treatment with several other analogs of cAMP produces only scant evidence of the expected mimicry or blockade of the actions of HCO3-, perhaps as a consequence of limited permeation. Our findings indicate a requirement for cAMP-mediated protein phosphorylation in the enhancement of flagellar and channel functions that HCO3- produces during sperm activation.


Nature | 2012

Structure of the carboxy-terminal region of a KCNH channel

Tinatin I. Brelidze; Anne E. Carlson; Banumathi Sankaran; William N. Zagotta

The KCNH family of ion channels, comprising ether-à-go-go (EAG), EAG-related gene (ERG), and EAG-like (ELK) K+-channel subfamilies, is crucial for repolarization of the cardiac action potential, regulation of neuronal excitability and proliferation of tumour cells. The carboxy-terminal region of KCNH channels contains a cyclic-nucleotide-binding homology domain (CNBHD) and C-linker that couples the CNBHD to the pore. The C-linker/CNBHD is essential for proper function and trafficking of ion channels in the KCNH family. However, despite the importance of the C-linker/CNBHD for the function of KCNH channels, the structural basis of ion-channel regulation by the C-linker/CNBHD is unknown. Here we report the crystal structure of the C-linker/CNBHD of zebrafish ELK channels at 2.2-Å resolution. Although the overall structure of the C-linker/CNBHD of ELK channels is similar to the cyclic-nucleotide-binding domain (CNBD) structure of the related hyperpolarization-activated cyclic-nucleotide-modulated (HCN) channels, there are marked differences. Unlike the CNBD of HCN, the CNBHD of ELK displays a negatively charged electrostatic profile that explains the lack of binding and regulation of KCNH channels by cyclic nucleotides. Instead of cyclic nucleotide, the binding pocket is occupied by a short β-strand. Mutations of the β-strand shift the voltage dependence of activation to more depolarized voltages, implicating the β-strand as an intrinsic ligand for the CNBHD of ELK channels. In both ELK and HCN channels the C-linker is the site of virtually all of the intersubunit interactions in the C-terminal region. However, in the zebrafish ELK structure there is a reorientation in the C-linker so that the subunits form dimers instead of tetramers, as observed in HCN channels. These results provide a structural framework for understanding the regulation of ion channels in the KCNH family by the C-linker/CNBHD and may guide the design of specific drugs.


Journal of Biological Chemistry | 2009

Absence of direct cyclic nucleotide modulation of mEAG1 and hERG1 channels revealed with fluorescence and electrophysiological methods.

Tinatin I. Brelidze; Anne E. Carlson; William N. Zagotta

Similar to CNG and HCN channels, EAG and ERG channels contain a cyclic nucleotide binding domain (CNBD) in their C terminus. While cyclic nucleotides have been shown to facilitate opening of CNG and HCN channels, their effect on EAG and ERG channels is less clear. Here we explored cyclic nucleotide binding and modulation of mEAG1 and hERG1 channels with fluorescence and electrophysiology. Binding of cyclic nucleotides to the isolated CNBD of mEAG1 and hERG1 channels was examined with two independent fluorescence-based methods: changes in tryptophan fluorescence and fluorescence of an analog of cAMP, 8-NBD-cAMP. As a positive control for cyclic nucleotide binding we used changes in the fluorescence of the isolated CNBD of mHCN2 channels. Our results indicated that cyclic nucleotides do not bind to the isolated CNBD domain of mEAG1 channels and bind with low affinity (Kd ≥ 51 μm) to the isolated CNBD of hERG1 channels. Consistent with the results on the isolated CNBD, application of cyclic nucleotides to inside-out patches did not affect currents recorded from mEAG1 channels. Surprisingly, despite its low affinity binding to the isolated CNBD, cAMP also had no effect on currents from hERG1 channels even at high concentrations. Our results indicate that cyclic nucleotides do not directly modulate mEAG1 and hERG1 channels. Further studies are necessary to determine if the CNBD in the EAG family of K+ channels might harbor a binding site for a ligand yet to be uncovered.


Nature | 2013

The structural mechanism of KCNH-channel regulation by the eag domain

Yoni Haitin; Anne E. Carlson; William N. Zagotta

The KCNH voltage-dependent potassium channels (ether-à-go-go, EAG; EAG-related gene, ERG; EAG-like channels, ELK) are important regulators of cellular excitability and have key roles in diseases such as cardiac long QT syndrome type 2 (LQT2), epilepsy, schizophrenia and cancer. The intracellular domains of KCNH channels are structurally distinct from other voltage-gated channels. The amino-terminal region contains an eag domain, which is composed of a Per-Arnt-Sim (PAS) domain and a PAS-cap domain, whereas the carboxy-terminal region contains a cyclic nucleotide-binding homology domain (CNBHD), which is connected to the pore through a C-linker domain. Many disease-causing mutations localize to these specialized intracellular domains, which underlie the unique gating and regulation of KCNH channels. It has been suggested that the eag domain may regulate the channel by interacting with either the S4–S5 linker or the CNBHD. Here we present a 2 Å resolution crystal structure of the eag domain–CNBHD complex of the mouse EAG1 (also known as KCNH1) channel. It displays extensive interactions between the eag domain and the CNBHD, indicating that the regulatory mechanism of the eag domain primarily involves the CNBHD. Notably, the structure reveals that a number of LQT2 mutations at homologous positions in human ERG, in addition to cancer-associated mutations in EAG channels, localize to the eag domain–CNBHD interface. Furthermore, mutations at the interface produced marked effects on channel gating, demonstrating the important physiological role of the eag domain–CNBHD interaction. Our structure of the eag domain–CNBHD complex of mouse EAG1 provides unique insights into the physiological and pathophysiological mechanisms of KCNH channels.


PLOS ONE | 2009

Pharmacological Targeting of Native CatSper Channels Reveals a Required Role in Maintenance of Sperm Hyperactivation

Anne E. Carlson; Lindsey A. Burnett; Donato del Camino; Timothy A. Quill; Bertil Hille; Jayhong A. Chong; Magdalene M. Moran; Donner F. Babcock

The four sperm-specific CatSper ion channel proteins are required for hyperactivated motility and male fertility, and for Ca2+ entry evoked by alkaline depolarization. In the absence of external Ca2+, Na+ carries current through CatSper channels in voltage-clamped sperm. Here we show that CatSper channel activity can be monitored optically with the [Na+]i-reporting probe SBFI in populations of intact sperm. Removal of external Ca2+ increases SBFI signals in wild-type but not CatSper2-null sperm. The rate of the indicated rise of [Na+]i is greater for sperm alkalinized with NH4Cl than for sperm acidified with propionic acid, reflecting the alkaline-promoted signature property of CatSper currents. In contrast, the [Na+]i rise is slowed by candidate CatSper blocker HC-056456 (IC50 ∼3 µM). HC-056456 similarly slows the rise of [Ca2+]i that is evoked by alkaline depolarization and reported by fura-2. HC-056456 also selectively and reversibly decreased CatSper currents recorded from patch-clamped sperm. HC-056456 does not prevent activation of motility by HCO3 − but does prevent the development of hyperactivated motility by capacitating incubations, thus producing a phenocopy of the CatSper-null sperm. When applied to hyperactivated sperm, HC-056456 causes a rapid, reversible loss of flagellar waveform asymmetry, similar to the loss that occurs when Ca2+ entry through the CatSper channel is terminated by removal of external Ca2+. Thus, open CatSper channels and entry of external Ca2+ through them sustains hyperactivated motility. These results indicate that pharmacological targeting of the CatSper channel may impose a selective late-stage block to fertility, and that high-throughput screening with an optical reporter of CatSper channel activity may identify additional selective blockers with potential for male-directed contraception.


Biology of Reproduction | 2006

Signaling Pathways for Modulation of Mouse Sperm Motility by Adenosine and Catecholamine Agonists

Sonya M. Schuh; Anne E. Carlson; G. Stanley McKnight; Marco Conti; Bertil Hille; Donner F. Babcock

Abstract Capacitation of mammalian sperm, including alterations in flagellar motility, is presumably modulated by chemical signals encountered in the female reproductive tract. This work investigates signaling pathways for adenosine and catecholamine agonists that stimulate sperm kinetic activity. We show that 2-chloro-2′-deoxyadenosine and isoproterenol robustly accelerate flagellar beat frequency with EC50s near 10 and 0.05 μM, respectively. The several-fold acceleration is maximal by 60 sec. Although extracellular Ca2+ is required for agonist action on the flagellar beat, agonist treatment does not elevate sperm cytosolic [Ca2+] but does increase cAMP content. Acceleration does not require the conventional transmembrane adenylyl cyclase ADCY3, since it persists in sperm of ADCY3 knockout mice and in wild-type sperm in the presence of the inhibitors of conventional adenylyl cyclases SQ-22536, MDL-12330A, or 2′, 5′-dideoxyadenosine. In contrast, the acceleration by these agents is absent in sperm that lack the predominant atypical adenylyl cyclase, SACY. Responses to these agonists are also absent in sperm from mice lacking the sperm-specific Cα2 catalytic subunit of protein kinase A (PRKACA). Agonist responses also are strongly suppressed in wild-type sperm by the protein kinase inhibitor H-89. These results show that adenosine and catecholamine analogs activate sperm motility by mechanisms that require extracellular Ca2+, the atypical sperm adenylyl cyclase, cAMP, and protein kinase A.


The Journal of General Physiology | 2013

Flavonoid regulation of EAG1 channels

Anne E. Carlson; Tinatin I. Brelidze; William N. Zagotta

The voltage-gated, K+-selective ether á go-go 1 (EAG1) channel is expressed throughout the brain where it is thought to regulate neuronal excitability. Besides its normal physiological role in the brain, EAG1 is abnormally expressed in several cancer cell types and promotes tumor progression. Like all other channels in the KCNH family, EAG1 channels have a large intracellular carboxy-terminal region that shares structural similarity with cyclic nucleotide–binding homology domains (CNBHDs). EAG1 channels, however, are not regulated by the direct binding of cyclic nucleotides and have no known endogenous ligands. In a screen of biological metabolites, we have now identified four flavonoids as potentiators of EAG1 channels: fisetin, quercetin, luteolin, and kaempferol. These four flavonoids shifted the voltage dependence of activation toward more hyperpolarizing potentials and slowed channel deactivation. All four flavonoids regulated channel gating with half-maximal concentrations of 2–8 µM. The potentiation of gating did not require the amino-terminal or post-CNBHD regions of EAG1 channels. However, in fluorescence resonance energy transfer and anisotropy-based binding assays, flavonoids bound to the purified CNBHD of EAG1 channels. The CNBHD of KCNH channels contains an intrinsic ligand, a conserved stretch of residues that occupy the cyclic nucleotide–binding pocket. Mutations of the intrinsic ligand in EAG1 (Y699A) potentiated gating similar to flavonoids, and flavonoids did not further potentiate EAG1-Y699A channels. Furthermore, the Y699A mutant CNBHD bound to flavonoids with higher affinity than wild-type CNBHD. These results suggest that the flavonoids identified here potentiated EAG1 channels by binding to the CNBHD, possibly by displacing their intrinsic ligand. EAG1 channels should be considered as a possible target for the physiological effects of flavonoids.


The Journal of General Physiology | 2003

Dequalinium: A Novel, High-affinity Blocker of CNGA1 Channels

Tamara Rosenbaum; León D. Islas; Anne E. Carlson; Sharona E. Gordon

Cyclic nucleotide–gated (CNG) channels have been shown to be blocked by diltiazem, tetracaine, polyamines, toxins, divalent cations, and other compounds. Dequalinium is an organic divalent cation which suppresses the rat small conductance Ca2+-activated K+ channel 2 (rSK2) and the activity of protein kinase C. In this study, we have tested the ability of dequalinium to block CNGA1 channels and heteromeric CNGA1+CNGB1 channels. When applied to the intracellular side of inside-out excised patches from Xenopus oocytes, dequalinium blocks CNGA1 channels with a K1/2 ≈ 190 nM and CNGA1+CNGB1 channels with a K1/2 ≈ 385 nM, at 0 mV. This block occurs in a state-independent fashion, and is voltage dependent with a zδ ≈ 1. Our data also demonstrate that dequalinium interacts with the permeant ion probably because it occupies a binding site in the ion conducting pathway. Dequalinium applied to the extracellular surface also produced block, but with a voltage dependence that suggests it crosses the membrane to block from the inside. We also show that at the single-channel level, dequalinium is a slow blocker that does not change the unitary conductance of CNGA1 channels. Thus, dequalinium should be a useful tool for studying permeation and gating properties of CNG channels.


PLOS ONE | 2010

Identifying Regulators for EAG1 Channels with a Novel Electrophysiology and Tryptophan Fluorescence Based Screen

Tinatin I. Brelidze; Anne E. Carlson; Douglas R. Davies; Lance J. Stewart; William N. Zagotta

Background Ether-à-go-go (EAG) channels are expressed throughout the central nervous system and are also crucial regulators of cell cycle and tumor progression. The large intracellular amino- and carboxy- terminal domains of EAG1 each share similarity with known ligand binding motifs in other proteins, yet EAG1 channels have no known regulatory ligands. Methodology/Principal Findings Here we screened a library of small biologically relevant molecules against EAG1 channels with a novel two-pronged screen to identify channel regulators. In one arm of the screen we used electrophysiology to assess the functional effects of the library compounds on full-length EAG1 channels. In an orthogonal arm, we used tryptophan fluorescence to screen for binding of the library compounds to the isolated C-terminal region. Conclusions/Significance Several compounds from the flavonoid, indole and benzofuran chemical families emerged as binding partners and/or regulators of EAG1 channels. The two-prong screen can aid ligand and drug discovery for ligand-binding domains of other ion channels.

Collaboration


Dive into the Anne E. Carlson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bertil Hille

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Sonya M. Schuh

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Timothy A. Quill

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Banumathi Sankaran

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Maiwase Tembo

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Marco Conti

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge