Anne-Laure Poher
University of Geneva
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anne-Laure Poher.
Frontiers in Physiology | 2015
Anne-Laure Poher; Jordi Altirriba; Christelle Veyrat-Durebex; Françoise Rohner-Jeanrenaud
Presence of brown adipose tissue (BAT), characterized by the expression of the thermogenic uncoupling protein 1 (UCP1), has recently been described in adult humans. UCP1 is expressed in classical brown adipocytes, as well as in “beige cells” in white adipose tissue (WAT). The thermogenic activity of BAT is mainly controlled by the sympathetic nervous system. Endocrine factors, such as fibroblast growth factor 21 (FGF21) and bone morphogenic protein factor-9 (BMP-9), predominantly produced in the liver, were shown to lead to activation of BAT thermogenesis, as well as to “browning” of WAT. This was also observed in response to irisin, a hormone secreted by skeletal muscles. Different approaches were used to delineate the impact of UCP1 on insulin sensitivity. When studied under thermoneutral conditions, UCP1 knockout mice exhibited markedly increased metabolic efficiency due to impaired thermogenesis. The impact of UCP1 deletion on insulin sensitivity in these mice was not reported. Conversely, several studies in both rodents and humans have shown that BAT activation (by cold exposure, β3-agonist treatment, transplantation and others) improves glucose tolerance and insulin sensitivity. Interestingly, similar results were obtained by adipose tissue-specific overexpression of PR-domain-containing 16 (PRDM16) or BMP4 in mice. The mediators of such beneficial effects seem to include FGF21, interleukin-6, BMP8B and prostaglandin D2 synthase. Interestingly, some of these molecules can be secreted by BAT itself, indicating the occurrence of autocrine effects. Stimulation of BAT activity and/or recruitment of UCP1-positive cells are therefore relevant targets for the treatment of obesity/type 2 diabetes in humans.
Endocrinology | 2014
Jordi Altirriba; Anne-Laure Poher; Aurélie Caillon; Denis Arsenijevic; Christelle Veyrat-Durebex; Jacqueline Lyautey; Abdul G. Dulloo; Françoise Rohner-Jeanrenaud
Oxytocin has been suggested as a novel therapeutic against obesity, because it induces weight loss and improves glucose tolerance in diet-induced obese rodents. A recent clinical pilot study confirmed the oxytocin-induced weight-reducing effect in obese nondiabetic subjects. Nevertheless, the mechanisms involved and the impact on the main comorbidity associated with obesity, type 2 diabetes, are unknown. Lean and ob/ob mice (model of obesity, hyperinsulinemia, and diabetes) were treated for 2 weeks with different doses of oxytocin, analogues with longer half-life (carbetocin) or higher oxytocin receptor specificity ([Thr4,Gly7]-oxytocin). Food and water intake, body weight, and glycemia were measured daily. Glucose, insulin, and pyruvate tolerance, body composition, several hormones, metabolites, gene expression, as well as enzyme activities were determined. Although no effect of oxytocin on the main parameters was observed in lean mice, the treatment dose-dependently reduced food intake and body weight gain in ob/ob animals. Carbetocin behaved similarly to oxytocin, whereas [Thr4,Gly7]-oxytocin (TGOT) and a low oxytocin dose decreased body weight gain without affecting food intake. The body weight gain-reducing effect was limited to the fat mass only, with decreased lipid uptake, lipogenesis, and inflammation, combined with increased futile cycling in abdominal adipose tissue. Surprisingly, oxytocin treatment of ob/ob mice was accompanied by a worsening of basal glycemia and glucose tolerance, likely due to increased corticosterone levels and stimulation of hepatic gluconeogenesis. These results impose careful selection of the conditions in which oxytocin treatment should be beneficial for obesity and its comorbidities, and their relevance for human pathology needs to be determined.
Journal of Hepatology | 2015
Marion Peyrou; Lucie Bourgoin; Anne-Laure Poher; Jordi Altirriba; Christine Maeder; Aurélie Caillon; Margot Fournier; Xavier Montet; Françoise Rohner-Jeanrenaud; Michelangelo Foti
BACKGROUND & AIMS PTEN is a dual lipid/protein phosphatase, downregulated in steatotic livers with obesity or HCV infection. Liver-specific PTEN knockout (LPTEN KO) mice develop steatosis, inflammation/fibrosis and hepatocellular carcinoma with aging, but surprisingly also enhanced glucose tolerance. This study aimed at understanding the mechanisms by which hepatic PTEN deficiency improves glucose tolerance, while promoting fatty liver diseases. METHODS Control and LPTEN KO mice underwent glucose/pyruvate tolerance tests and euglycemic-hyperinsulinemic clamps. Body fat distribution was assessed by EchoMRI, CT-scan and dissection analyses. Primary/cultured hepatocytes and insulin-sensitive tissues were analysed ex vivo. RESULTS PTEN deficiency in hepatocytes led to steatosis through increased fatty acid (FA) uptake and de novo lipogenesis. Although LPTEN KO mice exhibited hepatic steatosis, they displayed increased skeletal muscle insulin sensitivity and glucose uptake, as assessed by euglycemic-hyperinsulinemic clamps. Surprisingly, white adipose tissue (WAT) depots were also drastically reduced. Analyses of key enzymes involved in lipid metabolism further indicated that FA synthesis/esterification was decreased in WAT. In addition, Ucp1 expression and multilocular lipid droplet structures were observed in this tissue, indicating the presence of beige adipocytes. Consistent with a liver to muscle/adipocyte crosstalk, the expression of liver-derived circulating factors, known to impact on muscle insulin sensitivity and WAT homeostasis (e.g. FGF21), was modulated in LPTEN KO mice. CONCLUSIONS Although steatosis develops in LPTEN KO mice, PTEN deficiency in hepatocytes promotes a crosstalk between liver and muscle, as well as adipose tissue, resulting in enhanced insulin sensitivity, improved glucose tolerance and decreased adiposity.
Frontiers in Endocrinology | 2015
Jordi Altirriba; Anne-Laure Poher; Françoise Rohner-Jeanrenaud
This review summarizes the existing literature on the effects of oxytocin administration in the treatment of obesity in different animal models and in humans, focusing on the central control of food intake, the oxytocin effects on adipose tissue, and the relationships between oxytocin and leptin. Oxytocin is a hypothalamic nonapeptide synthesized mainly in the paraventricular and supraoptic nuclei projecting to the pituitary, where it reaches the peripheral circulation, as well as to other brain regions. Moreover, leptin modulates oxytocin levels and activates oxytocin neurons in the hypothalamic paraventricular nucleus, which innervates the nucleus of the solitary tract, partly responsible for the brain-elicited oxytocin effects. Taking into account that oxytocin is located downstream leptin, it was hypothesized that oxytocin treatment would be effective in decreasing body weight in leptin-resistant DIO animals, as well as in those with leptin or with leptin receptor deficiency. Several groups have demonstrated that in such animal models (rats, mice, and rhesus monkeys), central or peripheral oxytocin administration decreases body weight, mainly due to a decrease in fat mass, demonstrating that an oxytocin treatment is able to partly overcome leptin deficiency or resistance. Moreover, a pilot clinical study demonstrated the efficiency of oxytocin in the treatment of obesity in human subjects, confirming the results obtained in the different animal models. Larger multicenter studies are now needed to determine whether the beneficial effects of oxytocin treatment can apply not only to obese but also to type 2 diabetic patients. These studies should also shed some light on the molecular mechanisms of oxytocin action in humans.
American Journal of Physiology-endocrinology and Metabolism | 2011
Christelle Veyrat-Durebex; Anne-Laure Poher; Aurélie Caillon; Xavier Montet; Françoise Rohner-Jeanrenaud
Recent studies describe the Lou/C rat as a model of resistance to age- and diet-induced obesity and suggest a preferential channeling of nutrients toward utilization rather than storage under standard feeding conditions. The purpose of the present study was to evaluate lipid metabolism of Lou/C and Wistar rats under a high-fat (HF) diet. Four-month-old male Lou/C and Wistar animals were submitted to a 40% HF diet for 5-9 wk. Evolution of food intake, body weight, and body composition, hormonal parameters, and expression of key transcription factors and enzymes involved in lipid metabolism were determined. Wistar rats developed obesity after 5 wk of HF diet, as previously described. Among the various parameters measured, accumulation of intraperitoneal fat was particularly evident in HF-fed Wistar rats. In these animals, thermogenesis was, however, stimulated as a likely compensatory mechanism against the development of obesity. On the contrary, Lou/C animals failed to develop obesity under such a diet, and intraperitoneal fat, not including epididymal and retroperitoneal fat depots, was virtually absent. Enzyme measurements confirmed lipid utilization rather than storage, which was accompanied by the striking emergence of uncoupling protein-1, characteristic of brown adipocytes, in white adipose tissue, particularly in the subcutaneous depot.
Cellular Physiology and Biochemistry | 2016
Mohamed Asrih; Christelle Veyrat-Durebex; Anne-Laure Poher; Jacqueline Lyautey; Françoise Rohner-Jeanrenaud; François R. Jornayvaz
Background/Aims: Fibroblast growth factor 21 (FGF21), a potent metabolic regulator, has been shown to improve insulin sensitivity in animal models of insulin resistance. Several studies have focused on identifying mediators of FGF21 effects. However, the identification of factors involved in FGF21 regulation is far from complete. As leptin is a potent metabolic modulator as well, we aimed at characterizing whether leptin may regulate FGF21. Methods: We investigated a potential regulation of FGF21 by leptin in vivo in Wistar rats and in vitro using human derived hepatocarcinoma HepG2 cells. This model was chosen as the liver is considered the main FGF21 expression site. Results: We found that leptin injections increased plasma FGF21 levels in adult Wistar rats. This was confirmed in vitro, as leptin increased FGF21 expression in HepG2 cells. We also showed that the leptin effect on FGF21 expression was mediated by STAT3 activation in HepG2 cells. Conclusion: New findings regarding a leptin-STAT3-FGF21 axis were provided in this study, although investigating the exact mechanisms linking leptin and FGF21 are still needed. These results are of great interest in the context of identifying potential new clinical approaches to treat metabolic diseases associated with insulin resistance, such as obesity and type 2 diabetes.
Diabetes | 2015
Anne-Laure Poher; Christelle Veyrat-Durebex; Jordi Altirriba; Xavier Montet; Didier J. Colin; Aurélie Caillon; Jacqueline Lyautey; Françoise Rohner-Jeanrenaud
Brown adipose tissue (BAT), characterized by the presence of uncoupling protein 1 (UCP1), has been described as metabolically active in humans. Lou/C rats, originating from the Wistar strain, are resistant to obesity. We previously demonstrated that Lou/C animals express UCP1 in beige adipocytes in inguinal white adipose tissue (iWAT), suggesting a role of this protein in processes such as the control of body weight and the observed improved insulin sensitivity. A β3 adrenergic agonist was administered for 2 weeks in Wistar and Lou/C rats to activate UCP1 and delineate its metabolic impact. The treatment brought about decreases in fat mass and improvements in insulin sensitivity in both groups. In BAT, UCP1 expression increased similarly in response to the treatment in the two groups. However, the intervention induced the appearance of beige cells in iWAT, associated with a marked increase in UCP1 expression, in Lou/C rats only. This increase was correlated with a markedly enhanced glucose uptake measured during euglycemic-hyperinsulinemic clamps, suggesting a role of beige cells in this process. Activation of UCP1 in ectopic tissues, such as beige cells in iWAT, may be an interesting therapeutic approach to prevent body weight gain, decrease fat mass, and improve insulin sensitivity.
PLOS ONE | 2013
Christelle Veyrat-Durebex; Anne-Laure Poher; Aurélie Caillon; Emmanuel Somm; Philippe Vallet; Yves Charnay; Françoise Rohner-Jeanrenaud
The Lou/C rat, an inbred strain of Wistar origin, was described as a model of resistance to age- and diet-induced obesity. Although such a resistance involves many metabolic parameters described in our previous studies, Lou/C rats also exhibit a spontaneous food restriction due to decreased food consumption during the nocturnal period. We then attempted to delineate the leptin sensitivity and mechanisms implicated in this strain, using different protocols of acute central and peripheral leptin administration. A first analysis of the meal patterns revealed that Lou/C rats eat smaller meals, without any change in meal number compared to age-matched Wistar animals. Although the expression of the recognized leptin transporters (leptin receptors and megalin) measured in the choroid plexus was normal in Lou/C rats, the decreased triglyceridemia observed in these animals is compatible with an increased leptin transport across the blood brain barrier. Improved hypothalamic leptin signaling in Lou/C rats was also suggested by the higher pSTAT3/STAT3 (signal transducer and activator of transcription 3) ratio observed following acute peripheral leptin administration, as well as by the lower hypothalamic mRNA expression of the suppressor of cytokine signaling 3 (SOCS3), known to downregulate leptin signaling. To conclude, spontaneous hypophagia of Lou/C rats appears to be related to improved leptin sensitivity. The main mechanism underlying such a phenomenon consists in improved leptin signaling through the Ob-Rb leptin receptor isoform, which seems to consequently lead to overexpression of brain-derived neurotrophic factor (BDNF) and thyrotropin-releasing hormone (TRH).
Diabetes & Metabolism | 2017
S. Garrido-Urbani; Nicolas Deblon; Anne-Laure Poher; Aurélie Caillon; P. Ropraz; Françoise Rohner-Jeanrenaud; Jordi Altirriba
AIM Oxytocin administration to diet-induced obese (DIO) rodents, monkeys and humans decreases body weight and fat mass with concomitant improvements in glucose metabolism. Moreover, several studies show an immunomodulatory role of oxytocin in a number of settings (such as atherosclerosis, injury, sepsis). This study aims to shed some light on the effects of oxytocin on macrophage polarization and cytokine production, as well as its possible impact on these parameters in adipose tissue in DIO mice with impaired glucose metabolism. METHODS Mouse bone marrow cells were differentiated into macrophages and treated with oxytocin. Macrophage proliferation, cytokine secretion and macrophage populations were determined. For experiments in vivo, DIO mice were treated with oxytocin for 2 weeks. Body weight and composition and glucose tolerance were subsequently followed. At the end of treatment, adipose tissue macrophage populations, plasma cytokine levels and cytokine expression in adipose tissue were determined. RESULTS In bone marrow-derived macrophages, oxytocin induced an anti-inflammatory phenotype (decreased M1/M2 ratio). In M1-derived macrophages, oxytocin decreased TNFα secretion, with no effects on the other cytokines tested nor any effect on cytokine secretion by M2-derived macrophages. Oxytocin treatment in DIO mice in vivo led to decreased body weight accompanied by an improvement in glucose tolerance, with no changes in plasma cytokine levels. In adipose tissue, oxytocin decreased Tnfα expression without modifying the M1/M2 macrophage ratio. CONCLUSION Oxytocin treatment decreases TNFα production both in vitro (in bone marrow-derived macrophages) and in vivo (in epididymal adipose tissue) in DIO mice. This effect may also be contributory to the observed improvement in glucose metabolism.
PLOS ONE | 2016
Anne-Laure Poher; Denis Arsenijevic; Mohamed Asrih; Abdul G. Dulloo; François R. Jornayvaz; Françoise Rohner-Jeanrenaud; Christelle Veyrat-Durebex
Physiological processes at adulthood, such as energy metabolism and insulin sensitivity may originate before or weeks after birth. These underlie the concept of fetal and/or neonatal programming of adult diseases, which is particularly relevant in the case of obesity and type 2 diabetes. The aim of this study was to determine the impact of a perinatal high fat diet on energy metabolism and on leptin as well as insulin sensitivity, early in life and at adulthood in two strains of rats presenting different susceptibilities to diet-induced obesity. The impact of a perinatal high fat diet on glucose tolerance and diet-induced obesity was also assessed. The development of glucose intolerance and of increased fat mass was confirmed in the obesity-prone Wistar rat, even after 28 days of age. By contrast, in obesity-resistant Lou/C rats, an improved early leptin signaling may be responsible for the lack of deleterious effect of the perinatal high fat diet on glucose tolerance and increased adiposity in response to high fat diet at adulthood. Altogether, this study shows that, even if during the perinatal period adaptation to the environment appears to be genetically determined, adaptive mechanisms to nutritional challenges occurring at adulthood can still be observed in rodents.