Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne-Marie Dion-Côté is active.

Publication


Featured researches published by Anne-Marie Dion-Côté.


Nature Structural & Molecular Biology | 2010

Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination

Rémi Buisson; Anne-Marie Dion-Côté; Yan Coulombe; Hélène Launay; Hong Cai; Alicja Z. Stasiak; Andrzej Stasiak; Bing Xia; Jean-Yves Masson

Inherited mutations in human PALB2 are associated with a predisposition to breast and pancreatic cancers. PALB2′s tumor-suppressing effect is thought to be based on its ability to facilitate BRCA2′s function in homologous recombination. However, the biochemical properties of PALB2 are unknown. Here we show that human PALB2 binds DNA, preferentially D-loop structures, and directly interacts with the RAD51 recombinase to stimulate strand invasion, a vital step of homologous recombination. This stimulation occurs through reinforcing biochemical mechanisms, as PALB2 alleviates inhibition by RPA and stabilizes the RAD51 filament. Moreover, PALB2 can function synergistically with a BRCA2 chimera (termed piccolo, or piBRCA2) to further promote strand invasion. Finally, we show that PALB2-deficient cells are sensitive to PARP inhibitors. Our studies provide the first biochemical insights into PALB2′s function with piBRCA2 as a mediator of homologous recombination in DNA double-strand break repair.


Molecular Ecology | 2013

Glacial cycles as an allopatric speciation pump in north-eastern American freshwater fishes

Julien April; Robert Hanner; Anne-Marie Dion-Côté; Louis Bernatchez

Allopatric speciation may be the principal mechanism generating new species. Yet, it remains difficult to judge the generality of this process because few studies have provided evidence that geographic isolation has triggered the development of reproductive isolation over multiple species of a regional fauna. Here, we first combine results from new empirical data sets (7 taxa) and published literature (9 taxa) to show that the eastern Great Lakes drainage represents a multispecies suture zone for glacial lineages of freshwater fishes with variable levels of genetic divergence. Second, we performed amplified fragment length polymorphism analyses among four pairs of lineages. Results indicate that lineages with relatively deep levels of mtDNA 5′ COI (barcode) sequence divergence (>2%) developed strong reproductive barriers, while lineages with lower levels of divergence show weaker reproductive isolation when found in sympatry. This suggests that a threshold of 2% sequence divergence at mtDNA could be used as a first step to flag cryptic species in North American freshwater fishes. By describing different levels of divergence and reproductive isolation in different co‐occurring fishes, we offer strong evidence that allopatric speciation has contributed significantly to the diversification of north‐eastern American freshwater fishes and confirm that Pleistocene glacial cycles can be viewed as a ‘speciation pump’ that played a predominant role in generating biodiversity.


Molecular Biology and Evolution | 2014

RNA-seq Reveals Transcriptomic Shock Involving Transposable Elements Reactivation in Hybrids of Young Lake Whitefish Species

Anne-Marie Dion-Côté; Sébastien Renaut; Eric Normandeau; Louis Bernatchez

Identifying the molecular basis of reproductive isolation among diverging lineages represents an essential step toward understanding speciation in natural populations. Postzygotic barriers can lead to hybrid breakdown, a syndrome that has been documented in several systems, potentially involving the reactivation of transposable elements. In northeastern North America, two lake whitefish lineages have repeatedly colonized postglacial lakes ~12,000 years ago, and a dwarf limnetic species has evolved multiple times from the normal benthic species. Reproductive isolation is incomplete between them; viable hybrids can be generated in the laboratory but significant mortality occurs and is associated with a malformed phenotype in backcross embryos, thus revealing a hybrid breakdown syndrome. By means of RNA-seq analyses, the objective of this study was to determine which genes were misregulated in hybrids and rigorously test the hypothesis of transposable element reactivation. We compared the transcriptomic landscape in pure embryos, F1-hybrids, and healthy and malformed backcrosses at the late embryonic stage. Extensive expression differences consistent with previously documented adaptive divergence between pure normal and dwarf embryos were identified for the first time. Pronounced transcriptome-wide deregulation in malformed backcrosses was observed, with over 15% of transcripts differentially expressed in all comparisons, compared with 1.5% between pure parental forms. Convincing evidence of transposable elements and noncoding transcripts reactivation in malformed backcrosses is presented. We propose that hybrid breakdown likely results from extensive genomic incompatibilities, plausibly encompassing transposable elements. Combined with previous studies, these results reveal synergy among many reproductive barriers, thus maintaining divergence between these two young whitefish species.


G3: Genes, Genomes, Genetics | 2015

RAD-QTL Mapping Reveals Both Genome-Level Parallelism and Different Genetic Architecture Underlying the Evolution of Body Shape in Lake Whitefish (Coregonus clupeaformis) Species Pairs.

Martin Laporte; Sean M. Rogers; Anne-Marie Dion-Côté; Eric Normandeau; Pierre-Alexandre Gagnaire; Anne C. Dalziel; Jobran Chebib; Louis Bernatchez

Parallel changes in body shape may evolve in response to similar environmental conditions, but whether such parallel phenotypic changes share a common genetic basis is still debated. The goal of this study was to assess whether parallel phenotypic changes could be explained by genetic parallelism, multiple genetic routes, or both. We first provide evidence for parallelism in fish shape by using geometric morphometrics among 300 fish representing five species pairs of Lake Whitefish. Using a genetic map comprising 3438 restriction site−associated DNA sequencing single-nucleotide polymorphisms, we then identified quantitative trait loci underlying body shape traits in a backcross family reared in the laboratory. A total of 138 body shape quantitative trait loci were identified in this cross, thus revealing a highly polygenic architecture of body shape in Lake Whitefish. Third, we tested for evidence of genetic parallelism among independent wild populations using both a single-locus method (outlier analysis) and a polygenic approach (analysis of covariation among markers). The single-locus approach provided limited evidence for genetic parallelism. However, the polygenic analysis revealed genetic parallelism for three of the five lakes, which differed from the two other lakes. These results provide evidence for both genetic parallelism and multiple genetic routes underlying parallel phenotypic evolution in fish shape among populations occupying similar ecological niches.


Science | 2017

Gene duplication can impart fragility, not robustness, in the yeast protein interaction network

Guillaume Diss; Isabelle Gagnon-Arsenault; Anne-Marie Dion-Côté; Hélène Vignaud; Diana Ascencio; Caroline M. Berger; Christian R. Landry

Robustness of protein networks It is thought that gene duplication helps cells maintain genetic robustness, but this seems not to be the whole story. Diss et al. investigated the fate of protein-protein interactions among duplicated genes in yeast. Some interacting duplicates evolved mutual dependence, resulting in a more fragile system. This finding helps us understand the evolutionary trajectories of gene duplications and how seemingly redundant genes can increase the complexity of protein interaction networks. Science, this issue p. 630 Yeast gene duplicates illuminate the evolution of the protein-protein interaction network. The maintenance of duplicated genes is thought to protect cells from genetic perturbations, but the molecular basis of this robustness is largely unknown. By measuring the interaction of yeast proteins with their partners in wild-type cells and in cells lacking a paralog, we found that 22 out of 56 paralog pairs compensate for the lost interactions. An equivalent number of pairs exhibit the opposite behavior and require each other’s presence for maintaining their interactions. These dependent paralogs generally interact physically, regulate each other’s abundance, and derive from ancestral self-interacting proteins. This reveals that gene duplication may actually increase mutational fragility instead of robustness in a large number of cases.


Proceedings of the Royal Society of London B: Biological Sciences | 2015

Reproductive isolation in a nascent species pair is associated with aneuploidy in hybrid offspring

Anne-Marie Dion-Côté; Radka Symonová; Petr Ráb; Louis Bernatchez

Speciation may occur when the genomes of two populations accumulate genetic incompatibilities and/or chromosomal rearrangements that prevent inter-breeding in nature. Chromosome stability is critical for survival and faithful transmission of the genome, and hybridization can compromise this. However, the role of chromosomal stability on hybrid incompatibilities has rarely been tested in recently diverged populations. Here, we test for chromosomal instability in hybrids between nascent species, the ‘dwarf’ and ‘normal’ lake whitefish (Coregonus clupeaformis). We examined chromosomes in pure embryos, and healthy and malformed backcross embryos. While pure individuals displayed chromosome numbers corresponding to the expected diploid number (2n = 80), healthy backcrosses showed evidence of mitotic instability through an increased variance of chromosome numbers within an individual. In malformed backcrosses, extensive aneuploidy corresponding to multiples of the haploid number (1n = 40, 2n = 80, 3n = 120) was found, suggesting meiotic breakdown in their F1 parent. However, no detectable chromosome rearrangements between parental forms were identified. Genomic instability through aneuploidy thus appears to contribute to reproductive isolation between dwarf and normal lake whitefish, despite their very recent divergence (approx. 15–20 000 generations). Our data suggest that genetic incompatibilities may accumulate early during speciation and limit hybridization between nascent species.


Molecular Ecology | 2017

Standing chromosomal variation in Lake Whitefish species pairs: the role of historical contingency and relevance for speciation.

Anne-Marie Dion-Côté; Radka Symonová; Fabien C. Lamaze; Šárka Pelikánová; Petr Ráb; Louis Bernatchez

The role of chromosome changes in speciation remains a debated topic, although demographic conditions associated with divergence should promote their appearance. We tested a potential relationship between chromosome changes and speciation by studying two Lake Whitefish (Coregonus clupeaformis) lineages that recently colonized postglacial lakes following allopatry. A dwarf limnetic species evolved repeatedly from the normal benthic species, becoming reproductively isolated. Lake Whitefish hybrids experience mitotic and meiotic instability, which may result from structurally divergent chromosomes. Motivated by this observation, we test the hypothesis that chromosome organization differs between Lake Whitefish species pairs using cytogenetics. While chromosome and fundamental numbers are conserved between the species (2n = 80, NF = 98), we observe extensive polymorphism of subtle karyotype traits. We describe intrachromosomal differences associated with heterochromatin and repetitive DNA, and test for parallelism among three sympatric species pairs. Multivariate analyses support the hypothesis that differentiation at the level of subchromosomal markers mostly appeared during allopatry. Yet we find no evidence for parallelism between species pairs among lakes, consistent with colonization effect or postcolonization differentiation. The reported intrachromosomal polymorphisms do not appear to play a central role in driving adaptive divergence between normal and dwarf Lake Whitefish. We discuss how chromosomal differentiation in the Lake Whitefish system may contribute to the destabilization of mitotic and meiotic chromosome segregation in hybrids, as documented previously. The chromosome structures detected here are still difficult to sequence and assemble, demonstrating the value of cytogenetics as a complementary approach to understand the genomic bases of speciation.


Molecular Ecology | 2016

History repeats itself: genomic divergence in copepods

Sébastien Renaut; Anne-Marie Dion-Côté

Press stop, erase everything from now till some arbitrary time in the past and start recording life as it evolves once again. Would you see the same tape of life playing itself over and over, or would a different story unfold every time? The late Steven Jay Gould called this experiment replaying the tape of life and argued that any replay of the tape would lead evolution down a pathway radically different from the road actually taken (Gould 1989). This thought experiment has puzzled evolutionary biologists for a long time: how repeatable are evolutionary events? And if history does indeed repeat itself, what are the factors that may help us predict the path taken? A powerful means to address these questions at a small evolutionary scale is to study closely related populations that have evolved independently, under similar environmental conditions. This is precisely what Pereira et al. ( ) set out to do using marine copepods Tigriopus californicus, and present their results in this issue of Molecular Ecology. They show that evolution can be repeatable and even partly predictable, at least at the molecular level. As expected from theory, patterns of divergence were shaped by natural selection. At the same time, strong genetic drift due to small population sizes also constrained evolution down a similar evolutionary road, and probably contributed to repeatable patterns of genomic divergence.


Molecular & Cellular Proteomics | 2017

Extended linkers improve the detection of PPIs by DHFR PCA in living cells

Andrée-Ève Chrétien; Isabelle Gagnon-Arsenault; Alexandre K. Dubé; Xavier Barbeau; Philippe Després; Claudine Lamothe; Anne-Marie Dion-Côté; Patrick Lagüe; Christian R. Landry

Understanding the function of cellular systems requires describing how proteins assemble with each other into transient and stable complexes and to determine their spatial relationships. Among the tools available to perform these analyses on a large scale is Protein-fragment Complementation Assay based on the dihydrofolate reductase (DHFR PCA). Here we test how longer linkers between the fusion proteins and the reporter fragments affect the performance of this assay. We investigate the architecture of the RNA polymerases, the proteasome and the conserved oligomeric Golgi (COG) complexes in living cells and performed large-scale screens with these extended linkers. We show that longer linkers significantly improve the detection of protein-protein interactions and allow to measure interactions further in space than the standard ones. We identify new interactions, for instance between the retromer complex and proteins related to autophagy and endocytosis. Longer linkers thus contribute an enhanced additional tool to the existing toolsets for the detection and measurements of protein-protein interactions and protein proximity in living cells.


Molecular & Cellular Proteomics | 2018

Extended linkers improve the detection of protein-protein interactions (PPIs) by dihydrofolate reductase protein-fragment complementation assay (DHFR PCA) in living cells

Andrée-Ève Chrétien; Isabelle Gagnon-Arsenault; Alexandre K. Dubé; Xavier Barbeau; Philippe Després; Claudine Lamothe; Anne-Marie Dion-Côté; Patrick Lagüe; Christian R. Landry

Collaboration


Dive into the Anne-Marie Dion-Côté's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sébastien Renaut

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge