Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabelle Gagnon-Arsenault is active.

Publication


Featured researches published by Isabelle Gagnon-Arsenault.


Molecular Microbiology | 2008

Activation mechanism, functional role and shedding of glycosylphosphatidylinositol‐anchored Yps1p at the Saccharomyces cerevisiae cell surface

Isabelle Gagnon-Arsenault; Luc Parisé; Jessy Tremblay; Yves Bourbonnais

Yeast cell wall assembly is a highly regulated and dynamic process. A class of cell surface aspartic peptidases anchored by a glycosylphosphatidylinositol (GPI) group, collectively known as yapsins, was proposed to be involved in cell wall construction. The Saccharomyces cerevisiae Yps1p, the prototypal yapsin, is processed internally within a loop region to produce an α/β two‐subunit enzyme. Here we investigated the activation mechanism of GPI‐anchored Yps1p and identified some of its substrates. We report that all activation steps of GPI‐Yps1p take place at the cell surface and are regulated by the environmental pH. GPI‐Yps1p is active in vivo at pH 6.0 and pH 3.0 and functions as a sheddase for a subset of GPI‐anchored enzymes, including itself and the Gas1 glucanosyltransferase. Importantly, while native GPI‐Yps1p weakly suppresses many phenotypes associated with the yeast kex2Δ mutant, loop mutants that interfere with conversion into the two‐subunit enzyme restore the kex2Δ phenotypes to near wild type level. We propose that cleavage of this internal loop region plays an important regulatory function through stimulating its shedding activity. Collectively, our data provide a direct link between the pH regulation of yeast cell wall assembly and the activity of a yapsin.


Science | 2017

Gene duplication can impart fragility, not robustness, in the yeast protein interaction network

Guillaume Diss; Isabelle Gagnon-Arsenault; Anne-Marie Dion-Côté; Hélène Vignaud; Diana Ascencio; Caroline M. Berger; Christian R. Landry

Robustness of protein networks It is thought that gene duplication helps cells maintain genetic robustness, but this seems not to be the whole story. Diss et al. investigated the fate of protein-protein interactions among duplicated genes in yeast. Some interacting duplicates evolved mutual dependence, resulting in a more fragile system. This finding helps us understand the evolutionary trajectories of gene duplications and how seemingly redundant genes can increase the complexity of protein interaction networks. Science, this issue p. 630 Yeast gene duplicates illuminate the evolution of the protein-protein interaction network. The maintenance of duplicated genes is thought to protect cells from genetic perturbations, but the molecular basis of this robustness is largely unknown. By measuring the interaction of yeast proteins with their partners in wild-type cells and in cells lacking a paralog, we found that 22 out of 56 paralog pairs compensate for the lost interactions. An equivalent number of pairs exhibit the opposite behavior and require each other’s presence for maintaining their interactions. These dependent paralogs generally interact physically, regulate each other’s abundance, and derive from ancestral self-interacting proteins. This reveals that gene duplication may actually increase mutational fragility instead of robustness in a large number of cases.


PLOS Genetics | 2012

Evidence for the Robustness of Protein Complexes to Inter-Species Hybridization

Jean-Baptiste Leducq; Guillaume Charron; Guillaume Diss; Isabelle Gagnon-Arsenault; Alexandre K. Dubé; Christian R. Landry

Despite the tremendous efforts devoted to the identification of genetic incompatibilities underlying hybrid sterility and inviability, little is known about the effect of inter-species hybridization at the protein interactome level. Here, we develop a screening platform for the comparison of protein–protein interactions (PPIs) among closely related species and their hybrids. We examine in vivo the architecture of protein complexes in two yeast species (Saccharomyces cerevisiae and Saccharomyces kudriavzevii) that diverged 5–20 million years ago and in their F1 hybrids. We focus on 24 proteins of two large complexes: the RNA polymerase II and the nuclear pore complex (NPC), which show contrasting patterns of molecular evolution. We found that, with the exception of one PPI in the NPC sub-complex, PPIs were highly conserved between species, regardless of protein divergence. Unexpectedly, we found that the architecture of the complexes in F1 hybrids could not be distinguished from that of the parental species. Our results suggest that the conservation of PPIs in hybrids likely results from the slow evolution taking place on the very few protein residues involved in the interaction or that protein complexes are inherently robust and may accommodate protein divergence up to the level that is observed among closely related species.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Systematic identification of signal integration by protein kinase A.

Marie Filteau; Guillaume Diss; Francisco Torres-Quiroz; Alexandre K. Dubé; Andrea Schraffl; Verena Bachmann; Isabelle Gagnon-Arsenault; Andrée-Ève Chrétien; Anne-Lise Steunou; Ugo Dionne; Jacques Côté; Nicolas Bisson; Eduard Stefan; Christian R. Landry

Significance Protein kinase A (PKA) complexes are versatile signaling enzymes controlling homeostasis in eukaryotes. This enzyme is involved in multiple functions under physiological and pathological conditions in humans and governs the virulence of many pathogenic fungi. Here we systematically identify PKA regulators in yeast. Notably, we describe signaling to PKA that involves feedback from the cellular recycling process, autophagy. We also uncover a posttranslational modification, acetylation, that regulates PKA activity in both yeast and mammals, and we show that this mechanism impacts aging. Thus, we identify what regulates PKA as a first step toward the ability to cure diseases and infections, for instance, by providing new candidate genes for drug targeting in health research and antifungals for agricultural and medical purposes. Cellular processes and homeostasis control in eukaryotic cells is achieved by the action of regulatory proteins such as protein kinase A (PKA). Although the outbound signals from PKA directed to processes such as metabolism, growth, and aging have been well charted, what regulates this conserved regulator remains to be systematically identified to understand how it coordinates biological processes. Using a yeast PKA reporter assay, we identified genes that influence PKA activity by measuring protein–protein interactions between the regulatory and the two catalytic subunits of the PKA complex in 3,726 yeast genetic-deletion backgrounds grown on two carbon sources. Overall, nearly 500 genes were found to be connected directly or indirectly to PKA regulation, including 80 core regulators, denoting a wide diversity of signals regulating PKA, within and beyond the described upstream linear pathways. PKA regulators span multiple processes, including the antagonistic autophagy and methionine biosynthesis pathways. Our results converge toward mechanisms of PKA posttranslational regulation by lysine acetylation, which is conserved between yeast and humans and that, we show, regulates protein complex formation in mammals and carbohydrate storage and aging in yeast. Taken together, these results show that the extent of PKA input matches with its output, because this kinase receives information from upstream and downstream processes, and highlight how biological processes are interconnected and coordinated by PKA.


PLOS Computational Biology | 2014

Detecting Functional Divergence after Gene Duplication through Evolutionary Changes in Posttranslational Regulatory Sequences

Alex N. Nguyen Ba; Bob Strome; Jun Jie Hua; Jonathan Desmond; Isabelle Gagnon-Arsenault; Eric L. Weiss; Christian R. Landry; Alan M. Moses

Gene duplication is an important evolutionary mechanism that can result in functional divergence in paralogs due to neo-functionalization or sub-functionalization. Consistent with functional divergence after gene duplication, recent studies have shown accelerated evolution in retained paralogs. However, little is known in general about the impact of this accelerated evolution on the molecular functions of retained paralogs. For example, do new functions typically involve changes in enzymatic activities, or changes in protein regulation? Here we study the evolution of posttranslational regulation by examining the evolution of important regulatory sequences (short linear motifs) in retained duplicates created by the whole-genome duplication in budding yeast. To do so, we identified short linear motifs whose evolutionary constraint has relaxed after gene duplication with a likelihood-ratio test that can account for heterogeneity in the evolutionary process by using a non-central chi-squared null distribution. We find that short linear motifs are more likely to show changes in evolutionary constraints in retained duplicates compared to single-copy genes. We examine changes in constraints on known regulatory sequences and show that for the Rck1/Rck2, Fkh1/Fkh2, Ace2/Swi5 paralogs, they are associated with previously characterized differences in posttranslational regulation. Finally, we experimentally confirm our prediction that for the Ace2/Swi5 paralogs, Cbk1 regulated localization was lost along the lineage leading to SWI5 after gene duplication. Our analysis suggests that changes in posttranslational regulation mediated by short regulatory motifs systematically contribute to functional divergence after gene duplication.


Journal of Proteomics | 2013

Transcriptional divergence plays a role in the rewiring of protein interaction networks after gene duplication.

Isabelle Gagnon-Arsenault; François-Christophe Marois Blanchet; Samuel Rochette; Guillaume Diss; Alexandre K. Dubé; Christian R. Landry

Gene duplication plays a key role in the evolution of protein-protein interaction (PPI) networks. After a gene duplication event, paralogous proteins may diverge through the gain and loss of PPIs. This divergence can be explained by two non-exclusive mechanisms. First, mutations may accumulate in the coding sequences of the paralogs and affect their protein sequences, which can modify, for instance, their binding interfaces and thus their interaction specificity. Second, mutations may accumulate in the non-coding region of the genes and affect their regulatory sequences. The resulting changes in expression profiles can lead to paralogous proteins being differentially expressed and occurring in the cell with different sets of potential interaction partners. These changes could also alter splicing regulation and lead to the inclusion or exclusion of alternative exons. The evolutionary role of these regulatory mechanisms remains largely unexplored. We use bioinformatics analyses of existing PPI data and proteome-wide PPI screening to show that the divergence of transcriptional regulation between paralogs plays a significant role in determining their PPI specificity. Because many gene duplication events are followed by rapid changes in transcriptional regulation, our results suggest that PPI networks may be rewired by gene duplication, without the need for protein to diverge in their binding specificities. This article is part of a Special Issue entitled: From protein structures to clinical applications.


Molecular Systems Biology | 2015

Evolutionary rescue by compensatory mutations is constrained by genomic and environmental backgrounds

Marie Filteau; Véronique Hamel; Marie-Christine Pouliot; Isabelle Gagnon-Arsenault; Alexandre K. Dubé; Christian R. Landry

Since deleterious mutations may be rescued by secondary mutations during evolution, compensatory evolution could identify genetic solutions leading to therapeutic targets. Here, we tested this hypothesis and examined whether these solutions would be universal or would need to be adapted to ones genetic and environmental makeups. We performed experimental evolutionary rescue in a yeast disease model for the Wiskott–Aldrich syndrome in two genetic backgrounds and carbon sources. We found that multiple aspects of the evolutionary rescue outcome depend on the genotype, the environment, or a combination thereof. Specifically, the compensatory mutation rate and type, the molecular rescue mechanism, the genetic target, and the associated fitness cost varied across contexts. The course of compensatory evolution is therefore highly contingent on the initial conditions in which the deleterious mutation occurs. In addition, these results reveal biologically favored therapeutic targets for the Wiskott–Aldrich syndrome, including the target of an unrelated clinically approved drug. Our results experimentally illustrate the importance of epistasis and environmental evolutionary constraints that shape the adaptive landscape and evolutionary rate of molecular networks.


Journal of Proteomics | 2014

Modulation of the yeast protein interactome in response to DNA damage

Samuel Rochette; Isabelle Gagnon-Arsenault; Guillaume Diss; Christian R. Landry

UNLABELLED Cells deploy diverse mechanisms to physiologically adapt to potentially detrimental perturbations. These mechanisms include changes in the organization of protein-protein interaction networks (PINs). Most PINs characterized to date are portrayed in a single environmental condition and are thus likely to miss important connections among biological processes. In this report, we show that the yeast DHFR-PCA on high-density arrays allows to detects modulations of protein-protein interactions (PPIs) in different conditions by testing more than 1000 PPIs in standard and in a drug-inducing DNA damage conditions. We identify 156 PPIs that show significant modulation in response to DNA damage. We provide evidence that modulated PPIs involve essential genes (NOP7, EXO84 and LAS17) playing critical roles in response to DNA damage. Additionally, we show that a significant proportion of PPI changes are likely explained by changes in protein localization and, to a lesser extent, protein abundance. The protein interaction modules affected by changing PPIs support the role of mRNA stability and translation, protein degradation and ubiquitylation and the regulation of the actin cytoskeleton in response to DNA damage. Overall, we provide a valuable tool and dataset for the study of the rewiring of PINs in response to environmental perturbations. BIOLOGICAL SIGNIFICANCE We show that the DHFR-PCA is a high-throughput method that allows the detection of changes in PPIs associated with different environmental conditions using DNA damage response as a testbed. We provide a valuable resource for the study of DNA damage in eukaryotic cells. This article is part of a Special Issue: Can Proteomics Fill the Gap Between Genomics and Phenotypes?


bioRxiv | 2017

Deep transcriptome annotation suggests that small and large proteins encoded in the same genes often cooperate

Sondos Samandi; Annie V Roy; Vivian Delcourt; Jean-François Lucier; Jules Gagnon; Maxime C Beaudoin; Benoît Vanderperre; Jean-François Jacques; Mylène Brunelle; Julie Motard; Isabelle Gagnon-Arsenault; Isabelle Fournier; Aïda Ouangraoua; Darel J. Hunting; Alan A. Cohen; Christian R. Landry; Michelle S. Scott; Xavier Roucou

Recent studies in eukaryotes have demonstrated the translation of alternative open reading frames (altORFs) in addition to annotated protein coding sequences (CDSs). We show that a large number of small proteins could in fact be coded by altORFs. The putative alternative proteins translated from altORFs have orthologs in many species and evolutionary patterns indicate that altORFs are particularly constrained in CDSs that evolve slowly. Thousands of predicted alternative proteins are detected in proteomic datasets by reanalysis using a database containing predicted alternative proteins. Protein domains and co-conservation analyses suggest a potential functional relationship between small and large proteins encoded in the same genes. This is illustrated with specific examples, including altMiD51, a 70 amino acid mitochondrial fission-promoting protein encoded in MiD51/Mief1/SMCR7L, a gene encoding an annotated protein promoting mitochondrial fission. Our results suggest that many coding genes code for more than one protein that are often functionally related.


bioRxiv | 2018

The high turnover of ribosome-associated transcripts from de novo ORFs produces gene-like characteristics available for de novo gene emergence in wild yeast populations

Éléonore Durand; Isabelle Gagnon-Arsenault; Isabelle Hatin; Lou Nielly-Thibault; Olivier Namy; Christian R. Landry

Little is known about the rate of emergence of genes de novo, how they spread in populations and what their initial properties are. We examined wild Saccharomyces paradoxus populations to characterize the diversity and turnover of intergenic ORFs over short evolutionary time-scales. We identified ∼34,000 intergenic ORFs per individual genome for a total of ∼64,000 orthogroups, which resulted from an estimated turnover rate relatively smaller than the rate of gene duplication in yeast. Hundreds of intergenic ORFs show translation signatures, similar to canonical genes, but lower translation efficiency, which could reduce their potential production cost or simply reflect a lack of optimization. Translated intergenic ORFs tend to display low expression levels with sequence properties that are on average closer to expectations based on intergenic sequences. However, some predicted de novo polypeptides with gene-like properties emerged from ancient as well as recent birth events, illustrating that the raw material for functional innovations may appear even over short evolutionary time-scales. Our results suggest that variation in the mutation rate along the genome impacts the turnover of random polypeptides, which may in turn influence their early evolutionary trajectory. Whereas low mutation rate regions allow more time for random intergenic ORFs to evolve and become functional before being lost, mutation hotspots allow for the rapid exploration of the molecular landscape, thereby increasing the probability to acquire a polypeptide with immediate gene-like properties and thus functional potential.

Collaboration


Dive into the Isabelle Gagnon-Arsenault's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge