Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Junbiao Dai is active.

Publication


Featured researches published by Junbiao Dai.


Molecular & Cellular Proteomics | 2011

The first identification of lysine malonylation substrates and its regulatory enzyme

Chao Peng; Zhike Lu; Zhongyu Xie; Zhongyi Cheng; Yue Chen; Minjia Tan; Hao Luo; Yi Zhang; Wendy He; Ke Yang; Bernadette M.M. Zwaans; Daniel X. Tishkoff; Linh Ho; David B. Lombard; Tong-Chuan He; Junbiao Dai; Eric Verdin; Yang Ye; Yingming Zhao

Protein post-translational modifications (PTMs) at the lysine residue, such as lysine methylation, acetylation, and ubiquitination, are diverse, abundant, and dynamic. They play a key role in the regulation of diverse cellular physiology. Here we report discovery of a new type of lysine PTM, lysine malonylation (Kmal). Kmal was initially detected by mass spectrometry and protein sequence-database searching. The modification was comprehensively validated by Western blot, tandem MS, and high-performance liquid chromatography of synthetic peptides, isotopic labeling, and identification of multiple Kmal substrate proteins. Kmal is a dynamic and evolutionarily conserved PTM observed in mammalian cells and bacterial cells. In addition, we demonstrate that Sirt5, a member of the class III lysine deacetylases, can catalyze lysine demalonylation and lysine desuccinylation reactions both in vitro and in vivo. This result suggests the possibility of nondeacetylation activity of other class III lysine deacetylases, especially those without obvious acetylation protein substrates. Our results therefore reveal a new type of PTM pathway and identify the first enzyme that can regulate lysine malonylation and lysine succinylation status.


Molecular & Cellular Proteomics | 2012

Lysine Succinylation and Lysine Malonylation in Histones

Zhongyu Xie; Junbiao Dai; Lunzhi Dai; Minjia Tan; Zhongyi Cheng; Yeming Wu; Jef D. Boeke; Yingming Zhao

Histone protein post-translational modifications (PTMs) are significant for gene expression and DNA repair. Here we report the identification and validation of a new type of PTM in histones, lysine succinylation. The identified lysine succinylated histone peptides were verified by MS/MS of synthetic peptides, HPLC co-elution, and isotopic labeling. We identified 13, 7, 10, and 7 histone lysine succinylation sites in HeLa, mouse embryonic fibroblast, Drosophila S2, and Saccharomyces cerevisiae cells, respectively. We demonstrated that this histone PTM is present in all eukaryotic cells we examined. Mutagenesis of succinylation sites followed by functional assays implied that histone lysine succinylation can cause unique functional consequences. We also identified one and two histone lysine malonylation sites in HeLa and S. cerevisiae cells, respectively. Our results therefore increase potential combinatorial diversity of histone PTMs and suggest possible new connections between histone biology and metabolism.


Nature | 2011

Synthetic chromosome arms function in yeast and generate phenotypic diversity by design

Jessica S. Dymond; Sarah M. Richardson; Candice E. Coombes; Timothy Babatz; Héloı̈se Muller; Narayana Annaluru; William J. Blake; Joy Wu Schwerzmann; Junbiao Dai; Derek Lee Lindstrom; Annabel C. Boeke; Daniel E. Gottschling; Srinivasan Chandrasegaran; Joel S. Bader; Jef D. Boeke

Recent advances in DNA synthesis technology have enabled the construction of novel genetic pathways and genomic elements, furthering our understanding of system-level phenomena. The ability to synthesize large segments of DNA allows the engineering of pathways and genomes according to arbitrary sets of design principles. Here we describe a synthetic yeast genome project, Sc2.0, and the first partially synthetic eukaryotic chromosomes, Saccharomyces cerevisiae chromosome synIXR, and semi-synVIL. We defined three design principles for a synthetic genome as follows: first, it should result in a (near) wild-type phenotype and fitness; second, it should lack destabilizing elements such as tRNA genes or transposons; and third, it should have genetic flexibility to facilitate future studies. The synthetic genome features several systemic modifications complying with the design principles, including an inducible evolution system, SCRaMbLE (synthetic chromosome rearrangement and modification by loxP-mediated evolution). We show the utility of SCRaMbLE as a novel method of combinatorial mutagenesis, capable of generating complex genotypes and a broad variety of phenotypes. When complete, the fully synthetic genome will allow massive restructuring of the yeast genome, and may open the door to a new type of combinatorial genetics based entirely on variations in gene content and copy number.


Cell | 2008

Probing Nucleosome Function: A Highly Versatile Library of Synthetic Histone H3 and H4 Mutants

Junbiao Dai; Edel M. Hyland; Daniel S. Yuan; Hailiang Huang; Joel S. Bader; Jef D. Boeke

Nucleosome structural integrity underlies the regulation of DNA metabolism and transcription. Using a synthetic approach, a versatile library of 486 systematic histone H3 and H4 substitution and deletion mutants that probes the contribution of each residue to nucleosome function was generated in Saccharomyces cerevisiae. We probed fitness contributions of each residue to perturbations of chromosome integrity and transcription, mapping global patterns of chemical sensitivities and requirements for transcriptional silencing onto the nucleosome surface. Each histone mutant was tagged with unique molecular barcodes, facilitating identification of histone mutant pools through barcode amplification, labeling, and TAG microarray hybridization. Barcodes were used to score complex phenotypes such as competitive fitness in a chemostat, DNA repair proficiency, and synthetic genetic interactions, revealing new functions for distinct histone residues and new interdependencies among nucleosome components and their modifiers.


Genes & Development | 2015

H3K36 methylation promotes longevity by enhancing transcriptional fidelity

Payel Sen; Weiwei Dang; Greg Donahue; Junbiao Dai; Jean Dorsey; Xiaohua Cao; Wei Liu; Kajia Cao; Rocco Perry; Jun Yeop Lee; Brian M. Wasko; Daniel T. Carr; Chong He; Brett Robison; John Wagner; Brian D. Gregory; Matt Kaeberlein; Brian K. Kennedy; Jef D. Boeke; Shelley L. Berger

Epigenetic mechanisms, including histone post-translational modifications, control longevity in diverse organisms. Relatedly, loss of proper transcriptional regulation on a global scale is an emerging phenomenon of shortened life span, but the specific mechanisms linking these observations remain to be uncovered. Here, we describe a life span screen in Saccharomyces cerevisiae that is designed to identify amino acid residues of histones that regulate yeast replicative aging. Our results reveal that lack of sustained histone H3K36 methylation is commensurate with increased cryptic transcription in a subset of genes in old cells and with shorter life span. In contrast, deletion of the K36me2/3 demethylase Rph1 increases H3K36me3 within these genes, suppresses cryptic transcript initiation, and extends life span. We show that this aging phenomenon is conserved, as cryptic transcription also increases in old worms. We propose that epigenetic misregulation in aging cells leads to loss of transcriptional precision that is detrimental to life span, and, importantly, this acceleration in aging can be reversed by restoring transcriptional fidelity.


BMC Genomics | 2014

Oil accumulation mechanisms of the oleaginous microalga Chlorella protothecoides revealed through its genome, transcriptomes, and proteomes.

Chunfang Gao; Yun Wang; Yue Shen; Dong Yan; Xi He; Junbiao Dai; Qingyu Wu

BackgroundMicroalgae-derived biodiesel is a promising substitute for conventional fossil fuels. In particular, the green alga Chlorella protothecoides sp. 0710 is regarded as one of the best candidates for commercial manufacture of microalgae-derived biofuel. This is due not only to its ability to live autotrophically through photosynthesis, but also to its capacity to produce a large amount of biomass and lipid through fermentation of glucose. However, until the present study, neither its genome sequence nor the platform required for molecular manipulations were available.ResultsWe generated a draft genome for C. protothecoides, and compared its genome size and gene content with that of Chlorella variabilis NC64A and Coccomyxa subellipsoidea C-169. This comparison revealed that C. protothecoides has a reduced genome size of 22.9 Mbp, about half that of its close relatives. The C. protothecoides genome encodes a smaller number of genes, fewer multi-copy genes, fewer unique genes, and fewer genome rearrangements compared with its close relatives. In addition, three Chlorella-specific hexose-proton symporter (HUP)-like genes were identified that enable the consumption of glucose and, consequently, heterotrophic growth. Furthermore, through comparative transcriptomic and proteomic studies, we generated a global perspective regarding the changes in metabolic pathways under autotrophic and heterotrophic growth conditions. Under heterotrophic conditions, enzymes involved in photosynthesis and CO2 fixation were almost completely degraded, either as mRNAs or as proteins. Meanwhile, the cells were not only capable of quickly assimilating glucose but also showed accelerated glucose catabolism through the upregulation of glycolysis and the tricarboxylic acid (TCA) cycle. Moreover, the rapid synthesis of pyruvate, upregulation of most enzymes involved in fatty acid synthesis, and downregulation of enzymes involved in fatty acid degradation favor the synthesis of fatty acids within the cell.ConclusionsDespite similarities to other Chlorella, C. protothecoides has a smaller genome than its close relatives. Genes involved in glucose utilization were identified, and these genes explained its ability to grow heterotrophically. Transcriptomic and proteomic results provided insight into its extraordinary ability to accumulate large amounts of lipid. The C. protothecoides draft genome will promote the use of this species as a research model.


Science | 2017

Synthesis, debugging, and effects of synthetic chromosome consolidation: synVI and beyond

Leslie A. Mitchell; Ann Wang; Giovanni Stracquadanio; Zheng Kuang; Xuya Wang; Kun Yang; Sarah M. Richardson; J. Andrew Martin; Yu Zhao; Roy Walker; Hongjiu Dai; Kang Dong; Zuojian Tang; Yanling Yang; Yizhi Cai; Adriana Heguy; Beatrix Ueberheide; David Fenyö; Junbiao Dai; Joel S. Bader; Jef D. Boeke

INTRODUCTION Total synthesis of designer chromosomes and genomes is a new paradigm for the study of genetics and biological systems. The Sc2.0 project is building a designer yeast genome from scratch to test and extend the limits of our biological knowledge. Here we describe the design, rapid assembly, and characterization of synthetic chromosome VI (synVI). Further, we investigate the phenotypic, transcriptomic, and proteomic consequences associated with consolidation of three synthetic chromosomes–synVI, synIII, and synIXR—into a single poly-synthetic strain. RATIONALE A host of Sc2.0 chromosomes, including synVI, have now been constructed in discrete strains. With debugging steps, where the number of bugs scales with chromosome length, all individual synthetic chromosomes have been shown to power yeast cells to near wild-type (WT) fitness. Testing the effects of Sc2.0 chromosome consolidation to uncover possible synthetic genetic interactions and/or perturbations of native cellular networks as the number of designer changes increases is the next major step for the Sc2.0 project. RESULTS SynVI was rapidly assembled using nine sequential steps of SwAP-In (switching auxotrophies progressively by integration), yielding a ~240-kb synthetic chromosome designed to Sc2.0 specifications. We observed partial silencing of the left- and rightmost genes on synVI, each newly positioned subtelomerically relative to their locations on native VI. This result suggests that consensus core X elements of Sc2.0 universal telomere caps are insufficient to fully buffer telomere position effects. The synVI strain displayed a growth defect characterized by an increased frequency of glycerol-negative colonies. The defect mapped to a synVI design feature in the essential PRE4 gene (YFR050C), encoding the β7 subunit of the 20S proteasome. Recoding 10 codons near the 3′ end of the PRE4 open reading frame (ORF) caused a ~twofold reduction in Pre4 protein level without affecting RNA abundance. Reverting the codons to the WT sequence corrected both the Pre4 protein level and the phenotype. We hypothesize that the formation of a stem loop involving recoded codons underlies reduced Pre4 protein level. Sc2.0 chromosomes (synI to synXVI) are constructed individually in discrete strains and consolidated into poly-synthetic (poly-syn) strains by “endoreduplication intercross.” Consolidation of synVI with synthetic chromosomes III (synIII) and IXR (synIXR) yields a triple-synthetic (triple-syn) strain that is ~6% synthetic overall—with almost 70 kb deleted, including 20 tRNAs, and more than 12 kb recoded. Genome sequencing of double-synthetic (synIII synVI, synIII synIXR, synVI synIXR) and triple-syn (synIII synVI synIXR) cells indicates that suppressor mutations are not required to enable coexistence of Sc2.0 chromosomes. Phenotypic analysis revealed a slightly slower growth rate for the triple-syn strain only; the combined effect of tRNA deletions on different chromosomes might underlie this result. Transcriptome and proteome analyses indicate that cellular networks are largely unperturbed by the existence of multiple synthetic chromosomes in a single cell. However, a second bug on synVI was discovered through proteomic analysis and is associated with alteration of the HIS2 transcription start as a consequence of tRNA deletion and loxPsym site insertion. Despite extensive genetic alterations across 6% of the genome, no major global changes were detected in the poly-syn strain “omics” analyses. CONCLUSION Analyses of phenotypes, transcriptomics, and proteomics of synVI and poly-syn strains reveal, in general, WT cell properties and the existence of rare bugs resulting from genome editing. Deletion of subtelomeres can lead to gene silencing, recoding deep within an ORF can yield a translational defect, and deletion of elements such as tRNA genes can lead to a complex transcriptional output. These results underscore the complementarity of transcriptomics and proteomics to identify bugs, the consequences of designer changes in Sc2.0 chromosomes. The consolidation of Sc2.0 designer chromosomes into a single strain appears to be exceptionally well tolerated by yeast. A predictable exception to this is the deletion of tRNAs, which will be restored on a separate neochromosome to avoid synthetic lethal genetic interactions between deleted tRNA genes as additional synthetic chromosomes are introduced. Debugging synVI and characterization of poly-synthetic yeast cells. (A) The second Sc2.0 chromosome to be constructed, synVI, encodes a “bug” that causes a variable colony size, dubbed a “glycerol-negative growth-suppression defect.” (B) Synonymous changes in the essential PRE4 ORF lead to a reduced protein level, which underlies the growth defect


Science | 2017

Bug mapping and fitness testing of chemically synthesized chromosome X

Yi Wu; Bing-Zhi Li; Meng Zhao; Leslie A. Mitchell; Ze Xiong Xie; Qiu Hui Lin; Xia Wang; Wen Hai Xiao; Ying Wang; Xiao Zhou; Hong Liu; Xia Li; Ming Zhu Ding; Duo Liu; Lu Zhang; Bao Li Liu; Xiao Le Wu; Fei Fei Li; Xiu Tao Dong; Bin Jia; Wen Zheng Zhang; Guo Zhen Jiang; Yue Liu; Xue Bai; Tian Qing Song; Yan Chen; Si Jie Zhou; Rui Ying Zhu; Feng Gao; Zheng Kuang

INTRODUCTION Design and construction of an extensively modified yeast genome is a direct means to interrogate the integrity, comprehensiveness, and accuracy of the knowledge amassed by the yeast community to date. The international synthetic yeast genome project (Sc2.0) aims to build an entirely designer, synthetic Saccharomyces cerevisiae genome. The synthetic genome is designed to increase genome stability and genetic flexibility while maintaining cell fitness near that of the wild type. A major challenge for a genome synthesis lies in identifying and eliminating fitness-reducing sequence variants referred to as “bugs.” RATIONALE Debugging is imperative for successfully building a fit strain encoding a synthetic genome. However, it is time-consuming and laborious to replace wild-type genes and measure strain fitness systematically. The Sc2.0 PCRTag system, which specifies recoded sequences within open reading frames (ORFs), is designed to distinguish synthetic from wild-type DNA in a simple polymerase chain reaction (PCR) assay. This system provides an opportunity to efficiently map bugs to the related genes by using a pooling strategy and subsequently correct them. Further, as we identify bugs in designer sequences, we will identify gaps in our knowledge and gain a deeper understanding of genome biology, allowing refinement of future design strategies. RESULTS We chemically synthesized yeast chromosome X, synX, designed to be 707,459 base pairs. A high-throughput mapping strategy called pooled PCRTag mapping (PoPM) was developed to identify unexpected bugs during chromosome assembly. With this method, the genotypes of pools of colonies with normal or defective fitness are assessed by PCRTag analysis. The PoPM method exploits the patchwork structure of synthetic and wild-type sequences observed in the majority of putative synthetic DNA integrants or meiotic progeny derived from synthetic/wild-type strain backcross. PCRTag analysis with both synthetic and wild-type specific primers, carried out with genomic DNA extracted from the two pools of clones (normal fitness versus a specific growth defect), can be used to identify regions of synthetic DNA missing from the normal fitness pool and, analogously, sections of wild-type DNA absent from the specific growth-defect pool. In this way, the defect can be efficiently mapped to a very small overlapping region, and subsequent systematic analysis of designed changes in that region can be used to identify the bug. Several bugs were identified and corrected, including a growth defect mapping to a specific synonymously recoded PCRTag sequence in the essential FIP1 ORF and the effect of introducing a loxPsym site that unexpectedly altered the the promoter function of a nearby gene, ATP2. In addition, meiotic crossover was employed to repair the massive duplications and rearrangements in the synthetic chromosome. The debugged synX strain exhibited high fitness under a variety of conditions tested and in competitive growth with the wild-type strain. CONCLUSION Synthetic yeast chromosome X was chemically synthesized from scratch, a rigorous, incremental step toward complete synthesis of the whole yeast genome. Thousands of designer modifications in synX revealed extensive flexibility of the yeast genome. We developed an efficient mapping method, PoPM, to identify bugs during genome synthesis, generalizable to any watermarked synthetic chromosome, and several details of yeast biology were uncovered by debugging. Considering the numerous gene-associated PCRTags available in the synthetic chromosomes, PoPM may represent a powerful tool to map interesting phenotypes of mutated synthetic strains or even mutated wild-type strains to the relevant genes. It may also be useful to study yeast genetic interactions when an unexpected phenotype is generated by alterations in two or more genes, substantially expanding understanding of yeast genomic and cellular functions. The PoPM method is also likely to be useful for mapping phenotype(s) resulting from the genome SCRaMbLE system. Characterization of synX and debugging by pooled PCRTag mapping. (Top) Design overview of synthetic chromosome X. (Bottom) Flow diagram of pooled PCRTag mapping (PoPM). Debugging a genome sequence is imperative for successfully building a synthetic genome. As part of the effort to build a designer eukaryotic genome, yeast synthetic chromosome X (synX), designed as 707,459 base pairs, was synthesized chemically. SynX exhibited good fitness under a wide variety of conditions. A highly efficient mapping strategy called pooled PCRTag mapping (PoPM), which can be generalized to any watermarked synthetic chromosome, was developed to identify genetic alterations that affect cell fitness (“bugs”). A series of bugs were corrected that included a large region bearing complex amplifications, a growth defect mapping to a recoded sequence in FIP1, and a loxPsym site affecting promoter function of ATP2. PoPM is a powerful tool for synthetic yeast genome debugging and an efficient strategy for phenotype-genotype mapping.


PLOS ONE | 2014

Heritable genome editing with CRISPR/Cas9 in the silkworm, Bombyx mori.

Wei Wei; Huhu Xin; Bhaskar Roy; Junbiao Dai; Yun-gen Miao; Guanjun Gao

We report the establishment of an efficient and heritable gene mutagenesis method in the silkworm Bombyx mori using modified type II clustered regularly interspaced short palindromic repeats (CRISPR) with an associated protein (Cas9) system. Using four loci Bm-ok, BmKMO, BmTH, and Bmtan as candidates, we proved that genome alterations at specific sites could be induced by direct microinjection of specific guide RNA and Cas9-mRNA into silkworm embryos. Mutation frequencies of 16.7–35.0% were observed in the injected generation, and DNA fragments deletions were also noted. Bm-ok mosaic mutants were used to test for mutant heritability due to the easily determined translucent epidermal phenotype of Bm-ok-disrupted cells. Two crossing strategies were used. In the first, injected Bm-ok moths were crossed with wild-type moths, and a 28.6% frequency of germline mutation transmission was observed. In the second strategy, two Bm-ok mosaic mutant moths were crossed with each other, and 93.6% of the offsprings appeared mutations in both alleles of Bm-ok gene (compound heterozygous). In summary, the CRISPR/Cas9 system can act as a highly specific and heritable gene-editing tool in Bombyx mori.


Science | 2017

Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome

Yue Shen; Yun Wang; Tai Chen; Feng Gao; Jianhui Gong; Dariusz Abramczyk; Roy Walker; Hongcui Zhao; Shihong Chen; Wei Liu; Carolin A. Müller; Adrien Paul-Dubois-Taine; Bonnie Alver; Giovanni Stracquadanio; Leslie A. Mitchell; Z.P. Luo; Yanqun Fan; Baojin Zhou; Bo Wen; Fengji Tan; Yujia Wang; Jin Zi; Zexiong Xie; Bingzhi Li; Kun Yang; Sarah M. Richardson; Hui Jiang; Christopher E. French; Conrad A. Nieduszynski; Romain Koszul

INTRODUCTION Although much effort has been devoted to studying yeast in the past few decades, our understanding of this model organism is still limited. Rapidly developing DNA synthesis techniques have made a “build-to-understand” approach feasible to reengineer on the genome scale. Here, we report on the completion of a 770-kilobase synthetic yeast chromosome II (synII). SynII was characterized using extensive Trans-Omics tests. Despite considerable sequence alterations, synII is virtually indistinguishable from wild type. However, an up-regulation of translational machinery was observed and can be reversed by restoring the transfer RNA (tRNA) gene copy number. RATIONALE Following the “design-build-test-debug” working loop, synII was successfully designed and constructed in vivo. Extensive Trans-Omics tests were conducted, including phenomics, transcriptomics, proteomics, metabolomics, chromosome segregation, and replication analyses. By both complementation assays and SCRaMbLE (synthetic chromosome rearrangement and modification by loxP-mediated evolution), we targeted and debugged the origin of a growth defect at 37°C in glycerol medium. RESULTS To efficiently construct megabase-long chromosomes, we developed an I-SceI–mediated strategy, which enables parallel integration of synthetic chromosome arms and reduced the overall integration time by 50% for synII. An I-SceI site is introduced for generating a double-strand break to promote targeted homologous recombination during mitotic growth. Despite hundreds of modifications introduced, there are still regions sharing substantial sequence similarity that might lead to undesirable meiotic recombinations when intercrossing the two semisynthetic chromosome arm strains. Induction of the I-SceI–mediated double-strand break is otherwise lethal and thus introduced a strong selective pressure for targeted homologous recombination. Since our strategy is designed to generate a markerless synII and leave the URA3 marker on the wild-type chromosome, we observed a tenfold increase in URA3-deficient colonies upon I-SceI induction, meaning that our strategy can greatly bias the crossover events toward the designated regions. By incorporating comprehensive phenotyping approaches at multiple levels, we demonstrated that synII was capable of powering the growth of yeast indistinguishably from wild-type cells (see the figure), showing highly consistent biological processes comparable to the native strain. Meanwhile, we also noticed modest but potentially significant up-regulation of the translational machinery. The main alteration underlying this change in expression is the deletion of 13 tRNA genes. A growth defect was observed in one very specific condition—high temperature (37°C) in medium with glycerol as a carbon source—where colony size was reduced significantly. We targeted and debugged this defect by two distinct approaches. The first approach involved phenotype screening of all intermediate strains followed by a complementation assay with wild-type sequences in the synthetic strain. By doing so, we identified a modification resulting from PCRTag recoding in TSC10, which is involved in regulation of the yeast high-osmolarity glycerol (HOG) response pathway. After replacement with wild-type TSC10, the defect was greatly mitigated. The other approach, debugging by SCRaMbLE, showed rearrangements in regions containing HOG regulation genes. Both approaches indicated that the defect is related to HOG response dysregulation. Thus, the phenotypic defect can be pinpointed and debugged through multiple alternative routes in the complex cellular interactome network. CONCLUSION We have demonstrated that synII segregates, replicates, and functions in a highly similar fashion compared with its wild-type counterpart. Furthermore, we believe that the iterative “design-build-test-debug” cycle methodology, established here, will facilitate progression of the Sc2.0 project in the face of the increasing synthetic genome complexity. SynII characterization. (A) Cell cycle comparison between synII and BY4741 revealed by the percentage of cells with separated CEN2-GFP dots, metaphase spindles, and anaphase spindles. (B) Replication profiling of synII (red) and BY4741 (black) expressed as relative copy number by deep sequencing

Collaboration


Dive into the Junbiao Dai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yizhi Cai

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar

Yue Shen

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Z.P. Luo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yun Wang

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge