Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anne S. Bassett is active.

Publication


Featured researches published by Anne S. Bassett.


Nature Reviews Disease Primers | 2015

22q11.2 Deletion Syndrome

Donna M. McDonald-McGinn; Kathleen E. Sullivan; Bruno Marino; Nicole Philip; Ann Swillen; Jacob Vorstman; Elaine H. Zackai; Beverly S. Emanuel; Joris Vermeesch; Bernice E. Morrow; Peter J. Scambler; Anne S. Bassett

22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal microdeletion disorder, estimated to result mainly from de novo non-homologous meiotic recombination events occurring in approximately 1 in every 1,000 fetuses. The first description in the English language of the constellation of findings now known to be due to this chromosomal difference was made in the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of immunodeficiency, hypoparathyroidism and congenital heart disease. The syndrome is now known to have a heterogeneous presentation that includes multiple additional congenital anomalies and later-onset conditions, such as palatal, gastrointestinal and renal abnormalities, autoimmune disease, variable cognitive delays, behavioural phenotypes and psychiatric illness — all far extending the original description of DiGeorge syndrome. Management requires a multidisciplinary approach involving paediatrics, general medicine, surgery, psychiatry, psychology, interventional therapies (physical, occupational, speech, language and behavioural) and genetic counselling. Although common, lack of recognition of the condition and/or lack of familiarity with genetic testing methods, together with the wide variability of clinical presentation, delays diagnosis. Early diagnosis, preferably prenatally or neonatally, could improve outcomes, thus stressing the importance of universal screening. Equally important, 22q11.2DS has become a model for understanding rare and frequent congenital anomalies, medical conditions, psychiatric and developmental disorders, and may provide a platform to better understand these disorders while affording opportunities for translational strategies across the lifespan for both patients with 22q11.2DS and those with these associated features in the general population.


American Journal of Human Genetics | 2003

Genome Scan Meta-Analysis of Schizophrenia and Bipolar Disorder, Part II: Schizophrenia

Cathryn M. Lewis; Douglas F. Levinson; Lesley H. Wise; Lynn E. DeLisi; Richard E. Straub; Iiris Hovatta; Nigel Melville Williams; Sibylle G. Schwab; Ann E. Pulver; Stephen V. Faraone; Linda M. Brzustowicz; Charles A. Kaufmann; David L. Garver; Hugh Gurling; Eva Lindholm; Hilary Coon; Hans W. Moises; William Byerley; Sarah H. Shaw; Andrea Mesén; Robin Sherrington; F. Anthony O'Neill; Dermot Walsh; Kenneth S. Kendler; Jesper Ekelund; Tiina Paunio; Jouko Lönnqvist; Leena Peltonen; Michael Conlon O'Donovan; Michael John Owen

Schizophrenia is a common disorder with high heritability and a 10-fold increase in risk to siblings of probands. Replication has been inconsistent for reports of significant genetic linkage. To assess evidence for linkage across studies, rank-based genome scan meta-analysis (GSMA) was applied to data from 20 schizophrenia genome scans. Each marker for each scan was assigned to 1 of 120 30-cM bins, with the bins ranked by linkage scores (1 = most significant) and the ranks averaged across studies (R(avg)) and then weighted for sample size (N(sqrt)[affected casess]). A permutation test was used to compute the probability of observing, by chance, each bins average rank (P(AvgRnk)) or of observing it for a bin with the same place (first, second, etc.) in the order of average ranks in each permutation (P(ord)). The GSMA produced significant genomewide evidence for linkage on chromosome 2q (PAvgRnk<.000417). Two aggregate criteria for linkage were also met (clusters of nominally significant P values that did not occur in 1,000 replicates of the entire data set with no linkage present): 12 consecutive bins with both P(AvgRnk) and P(ord)<.05, including regions of chromosomes 5q, 3p, 11q, 6p, 1q, 22q, 8p, 20q, and 14p, and 19 consecutive bins with P(ord)<.05, additionally including regions of chromosomes 16q, 18q, 10p, 15q, 6q, and 17q. There is greater consistency of linkage results across studies than has been previously recognized. The results suggest that some or all of these regions contain loci that increase susceptibility to schizophrenia in diverse populations.


American Journal of Medical Genetics Part A | 2005

Clinical features of 78 adults with 22q11 Deletion Syndrome.

Anne S. Bassett; Eva W.C. Chow; Janice Husted; Rosanna Weksberg; Oana Caluseriu; Gary Webb; Michael A. Gatzoulis

22q11 Deletion Syndrome (22q11DS) is a common microdeletion syndrome with multisystem expression. Phenotypic features vary with age, ascertainment, and assessment. We systematically assessed 78 adults (36 M, 42 F; mean age 31.5, SD 10.5 years) with a 22q11.2 deletion ascertained through an adult congenital cardiac clinic (n = 35), psychiatric‐related sources (n = 39), or as affected parents of subjects (n = 4). We recorded the lifetime prevalence of features requiring attention, with 95% confidence intervals (CI) not overlapping zero. Subtle learning difficulties, hypernasality and facial gestalt were not included. We investigated ascertainment effects using non‐overlapping subgroups ascertained with tetralogy of Fallot (n = 31) or schizophrenia (n = 31). Forty‐three features met inclusion criteria and were present in 5% or more patients, including several of later onset (e.g., hypothyroidism, cholelithiasis). Number of features per patient (median 9, range 3–22) correlated with hospitalizations (P = 0.0002) and, when congenital features were excluded, with age (P = 0.02). Adjusting for ascertainment, 25.8% (95% CI, 9.5–42.1%) of patients had cardiac anomalies and 22.6% (95% CI, 7.0–38.2%) had schizophrenia. Ascertainment subgroups were otherwise similar in median number and prevalence of features. Non‐characteristic features are common in 22q11DS. Adjusting for ascertainment effects is important. Many treatable conditions may be anticipated and features may accumulate over time. The results have implications for clinical assessment and management, genetic counseling and research into pathophysiological mechanisms.


American Journal of Human Genetics | 2008

Arrhythmogenic right ventricular cardiomyopathy type 5 is a fully penetrant, lethal arrhythmic disorder caused by a missense mutation in the TMEM43 gene.

Nancy D. Merner; Kathy Hodgkinson; Annika F.M. Haywood; Sean Connors; Vanessa M. French; Jörg-Detlef Drenckhahn; Christine Kupprion; Kalina Ramadanova; Ludwig Thierfelder; William J. McKenna; Barry Gallagher; Lynn Morris-Larkin; Anne S. Bassett; Patrick S. Parfrey; Terry-Lynn Young

Autosomal-dominant arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) causes sudden cardiac death and is characterized by clinical and genetic heterogeneity. Fifteen unrelated ARVC families with a disease-associated haplotype on chromosome 3p (ARVD5) were ascertained from a genetically isolated population. Identification of key recombination events reduced the disease region to a 2.36 Mb interval containing 20 annotated genes. Bidirectional resequencing showed one rare variant in transmembrane protein 43 (TMEM43 1073C-->T, S358L), was carried on all recombinant ARVD5 ancestral haplotypes from affected subjects and not found in population controls. The mutation occurs in a highly conserved transmembrane domain of TMEM43 and is predicted to be deleterious. Clinical outcomes in 257 affected and 151 unaffected subjects were compared, and penetrance was determined. We concluded that ARVC at locus ARVD5 is a lethal, fully penetrant, sex-influenced morbid disorder. Median life expectancy was 41 years in affected males compared to 71 years in affected females (relative risk 6.8, 95% CI 1.3-10.9). Heart failure was a late manifestation in survivors. Although little is known about the function of the TMEM43 gene, it contains a response element for PPAR gamma (an adipogenic transcription factor), which may explain the fibrofatty replacement of the myocardium, a characteristic pathological finding in ARVC.


The Journal of Pediatrics | 2011

Practical guidelines for managing patients with 22q11.2 deletion syndrome

Anne S. Bassett; Donna M. McDonald-McGinn; Koen Devriendt; Maria Cristina Digilio; Paula Goldenberg; Alex Habel; Bruno Marino; Sólveig Óskarsdóttir; Nicole Philip; Kathleen E. Sullivan; Ann Swillen; Jacob Vorstman

A 12-year-old boy currently is followed by multiple sub-specialists for problems caused by the chromosome 22q11.2 deletion syndrome (22q11DS) (Figure). He was born via spontaneous vaginal delivery, weighing 3033 g, to a 31-year-old G3P3 mother after a full-term pregnancy complicated only by mild polyhydramnios. Family history was non-contributory. Apgar scores were 8 at 1 minute and 9 at 5 minutes. With the exception of a weak cry, the results of the infant’s initial examination were unremarkable, and he was moved to the well-baby nursery. Shortly thereafter, a cardiac murmur was noted, the cardiology department was consulted, and the child was transferred to a local tertiary care facility with a diagnosis of tetralogy of Fallot. Stable, he was discharged home at 3 days of life. Figure Mild dysmorphic facial features of a boy aged 11 years with 22q11.2DS, including a short forehead, hooded eyelids with upslanting palpebral fissures, malar flatness, bulbous nasal tip with hypoplastic alae nasi, and protuberant ears. At 5 days of life, he had jerky movements. On presentation to the local emergency department, his total calcium level was 4.7 mg/dL, and later partial hypoparathyroidism was diagnosed. At that time, a consulting geneticist suggested the diagnosis of chromosome 22q11DS. Weeks later, the family received a telephone call confirming the diagnosis with fluorescence in situ hybridization (FISH). No additional information about the diagnosis, prognosis, etiology, or recurrence risk was provided until the child was 5 months of age, when he underwent cardiac repair at a third hospital, where a comprehensive 22q11DS program was in operation. In the interim, the child had feeding difficulties requiring supplemental nasogastric tube feeds, nasal regurgitation, and gastroesophageal reflux, while the parents searched the internet for reliable information about their son’s diagnosis. Subsequent notable abnormalities and interventions included: recurrent otitis media with bilateral myringotomy tube placement at 6 months; angioplasty with left pulmonary artery stent placement after the identification of pulmonary artery stenosis with bilateral pleural effusions at age 6 years; chronic upper respiratory infections with significant T cell dysfunction requiring live viral vaccines to be held until age 7 years; velopharyngeal incompetence necessitating posterior pharyngeal flap surgery at 7 years; enamel hypoplasia and numerous caries resulting in 3 separate dental procedures under general cardiac anesthesia beginning at age 7 years; multiple cervical and thoracic vertebral anomalies with thoracic levoconvex scoliosis and upper lumbar dextroscoliosis requiring growing rod placement at age 11 years with subsequent rod extension at ages 11.5 and 12 years; postoperative hypocalcemia; short stature; constipation; and persistent idiopathic thrombocytopenia. Pertinent negative test results included normal renal ultrasound scanning and parental 22q11.2 deletion studies. On physical examination, the boy’s height and weight have consistently tracked just below the fifth percentile, with no evidence of growth hormone deficiency. His head circumference is within reference range at the 25th percentile. Dysmorphic features include: a low anterior hairline; hooded eyelids; malar flatness; normally formed but protuberant ears with attached lobes; a mildly deviated nose with a bulbous nasal tip and hypoplastic alae nasi; asymmetric crying facies with a thin upper lip; mild micrognathia; a sacral dimple; and soft tissue syndactyly of the second and third toes. Developmentally, the boy had mild delays in achieving motor milestones, sitting at 11 months and walking at 18 months. However, he exhibited significant delays in the emergence of language: he never babbled, spoke his first words at age 3 years, and only achieved full conversational speech at 7 years. However, he had relative strengths in receptive language and communicated appropriately by the use of sign language. Now quite conversant, he is mainstreamed in the seventh grade with resource room supports. Moreover, he is affable, but exhibits anxiety and perseverations. Lastly, despite numerous medical, academic, and social challenges, he participates in assisted athletics, is an avid wrestling fan, and enjoys travel. However, his exceptionally supportive parents, siblings, and extended family continue to worry about his long-term outcome and transition of care as he approaches adulthood. As demonstrated by this boy’s complicated course, practical multi-system guidelines are needed to assist the general practitioner and specialists in caring for patients with 22q11DS. Although still under-recognized, detection, including in the prenatal setting, is increasing. Moreover, the phenotypic spectrum is highly variable, and patients may present at any age. Thus, initial guidelines developed by an international panel of experts present the best practice recommendations currently available across the lifespan, with a major focus on the changing issues through childhood development.


Biological Psychiatry | 1999

22q11 deletion syndrome: a genetic subtype of schizophrenia

Anne S. Bassett; Eva W.C. Chow

Schizophrenia is likely to be caused by several susceptibility genes and may have environmental factors that interact with susceptibility genes and/or nongenetic causes. Recent evidence supports the likelihood that 22q11 Deletion Syndrome (22qDS) represents an identifiable genetic subtype of schizophrenia. 22qDS is an under-recognized genetic syndrome associated with microdeletions on chromosome 22 and a variable expression that often includes mild congenital dysmorphic features, hypernasal speech, and learning difficulties. Initial evidence indicates that a minority of patients with schizophrenia (approximately 2%) may have 22qDS and that prevalence may be somewhat higher in subpopulations with developmental delay. This paper proposes clinical criteria (including facial features, learning disabilities, hypernasal speech, congenital heart defects and other congenital anomalies) to aid in identifying patients with schizophrenia who may have this subtype and outlines features that may increase the index of suspicion for this syndrome. Although no specific causal gene or genes have yet been identified in the deletion region, 22qDS may represent a more homogeneous subtype of schizophrenia. This subtype may serve as a model for neurodevelopmental origins of schizophrenia that could aid in delineating etiologic and pathogenetic mechanisms.


American Journal of Human Genetics | 1999

Linkage of Familial Schizophrenia to Chromosome 13q32

Linda M. Brzustowicz; William G. Honer; Eva W.C. Chow; Dawn Little; Jackie Hogan; Kathy Hodgkinson; Anne S. Bassett

Over the past 4 years, a number of investigators have reported findings suggestive of linkage to schizophrenia, with markers on chromosomes 13q32 and 8p21, with one recent study by Blouin et al. reporting significant linkage to these regions. As part of an ongoing genome scan, we evaluated microsatellite markers spanning chromosomes 8 and 13, for linkage to schizophrenia, in 21 extended Canadian families. Families were analyzed under autosomal dominant and recessive models, with broad and narrow definitions of schizophrenia. All models produced positive LOD scores with markers on 13q, with higher scores under the recessive models. The maximum three-point LOD scores were obtained under the recessive-broad model: 3.92 at recombination fraction (theta).1 with D13S793, under homogeneity, and 4.42 with alpha=.65 and straight theta=0 with D13S793, under heterogeneity. Positive LOD scores were also obtained, under all models, for markers on 8p. Although a maximum two-point LOD score of 3.49 was obtained under the dominant-narrow model with D8S136 at straight theta=0.1, multipoint analysis with closely flanking markers reduced the maximum LOD score in this region to 2. 13. These results provide independent significant evidence of linkage of a schizophrenia-susceptibility locus to markers on 13q32 and support the presence of a second susceptibility locus on 8p21.


Molecular Psychiatry | 2009

Meta-analysis of 32 genome-wide linkage studies of schizophrenia

M Y M Ng; Douglas F. Levinson; Stephen V. Faraone; Brian K. Suarez; Lynn E. DeLisi; Tadao Arinami; Brien P. Riley; Tiina Paunio; Ann E. Pulver; Irmansyah; Peter Holmans; Michael A. Escamilla; Dieter B. Wildenauer; Nigel Melville Williams; Claudine Laurent; Bryan J. Mowry; Linda M. Brzustowicz; M. Maziade; Pamela Sklar; David L. Garver; Gonçalo R. Abecasis; Bernard Lerer; M D Fallin; H M D Gurling; Pablo V. Gejman; Eva Lindholm; Hans W. Moises; William Byerley; Ellen M. Wijsman; Paola Forabosco

A genome scan meta-a nalysis (GSMA) was carried out on 32 independent genome-wide linkage scan analyses that included 3255 pedigrees with 7413 genotyped cases affected with schizophrenia (SCZ) or related disorders. The primary GSMA divided the autosomes into 120 bins, rank-ordered the bins within each study according to the most positive linkage result in each bin, summed these ranks (weighted for study size) for each bin across studies and determined the empirical probability of a given summed rank (PSR) by simulation. Suggestive evidence for linkage was observed in two single bins, on chromosomes 5q (142–168 Mb) and 2q (103–134 Mb). Genome-wide evidence for linkage was detected on chromosome 2q (119–152 Mb) when bin boundaries were shifted to the middle of the previous bins. The primary analysis met empirical criteria for ‘aggregate’ genome-wide significance, indicating that some or all of 10 bins are likely to contain loci linked to SCZ, including regions of chromosomes 1, 2q, 3q, 4q, 5q, 8p and 10q. In a secondary analysis of 22 studies of European-ancestry samples, suggestive evidence for linkage was observed on chromosome 8p (16–33 Mb). Although the newer genome-wide association methodology has greater power to detect weak associations to single common DNA sequence variants, linkage analysis can detect diverse genetic effects that segregate in families, including multiple rare variants within one locus or several weakly associated loci in the same region. Therefore, the regions supported by this meta-analysis deserve close attention in future studies.


American Journal of Human Genetics | 2002

A Major Susceptibility Locus for Specific Language Impairment Is Located on 13q21

Christopher W. Bartlett; Judy F. Flax; Mark W Logue; Veronica J. Vieland; Anne S. Bassett; Paula Tallal; Linda M. Brzustowicz

Children who fail to develop language normally-in the absence of explanatory factors such as neurological disorders, hearing impairment, or lack of adequate opportunity-are clinically described as having specific language impairment (SLI). SLI has a prevalence of approximately 7% in children entering school and is associated with later difficulties in learning to read. Research indicates that genetic factors are important in the etiology of SLI. Studies have consistently demonstrated that SLI aggregates in families. Increased monozygotic versus dizygotic twin concordance rates indicate that heredity, not just shared environment, is the cause of the familial clustering. We have collected five pedigrees of Celtic ancestry that segregate SLI, and we have conducted genomewide categorical linkage analysis, using model-based LOD score techniques. Analysis was conducted under both dominant and recessive models by use of three phenotypic classifications: clinical diagnosis, language impairment (spoken language quotient <85) and reading discrepancy (nonverbal IQ minus non-word reading >15). Chromosome 13 yielded a maximum multipoint LOD score of 3.92 under the recessive reading discrepancy model. Simulation to correct for multiple models and multiple phenotypes indicated that the genomewide empirical P value is <.01. As an alternative measure, we also computed the posterior probability of linkage (PPL), obtaining a PPL of 53% in the same region. One other genomic region yielded suggestive results on chromosome 2 (multipoint LOD score 2.86, genomic P value <.06 under the recessive language impairment model). Our findings underscore the utility of traditional LOD-score-based methods in finding genes for complex diseases, specifically, SLI.


American Journal of Medical Genetics Part A | 2005

Clinical and genetic epidemiology of Bardet-Biedl syndrome in Newfoundland: A 22-year prospective, population-based, cohort study

Susan J. Moore; Jane Green; Yanli Fan; Ashvinder K. Bhogal; Elizabeth Dicks; Bridget A. Fernandez; Mark Stefanelli; Christopher Murphy; Benvon C. Cramer; John Dean; Philip L. Beales; Nicholas Katsanis; Anne S. Bassett; William S. Davidson; Patrick S. Parfrey

Bardet–Biedl syndrome (BBS) and Laurence–Moon syndrome (LMS) have a similar phenotype, which includes retinal dystrophy, obesity, and hypogenitalism. They are differentiated by the presence of spasticity and the absence of polydactyly in LMS. The aims of this study were to describe the epidemiology of BBS and LMS, further define the phenotype, and examine genotype–phenotype correlation. The study involved 46 patients (26 males, 20 females) from 26 families, with a median age of 44 years (range 1–68 years). Assessments were performed in 1986, 1993, and 2001 and included neurological assessments, anthropometric measurements, and clinical photographs to assess dysmorphic features. The phenotype was highly variable within and between families. Impaired co‐ordination and ataxia occurred in 86% (18/21). Thirty percent (14/46) met criteria for psychiatric illness; other medical problems included cholecystectomy in 37% (17/46) and asthma in 28% (13/46). Dysmorphic features included brachycephaly, large ears, and short, narrow palpebral fissures. There was no apparent correlation of clinical or dysmorphic features with genotype. Two patients were diagnosed clinically as LMS but both had mutations in a BBS gene. The features in this population do not support the notion that BBS and LMS are distinct. The lack of a genotype–phenotype correlation implies that BBS proteins interact and are necessary for the development of many organs.

Collaboration


Dive into the Anne S. Bassett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory Costain

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nancy J. Butcher

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen W. Scherer

The Centre for Applied Genomics

View shared research outputs
Top Co-Authors

Avatar

Christian R. Marshall

The Centre for Applied Genomics

View shared research outputs
Top Co-Authors

Avatar

Donna M. McDonald-McGinn

Children's Hospital of Philadelphia

View shared research outputs
Researchain Logo
Decentralizing Knowledge