Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory Costain is active.

Publication


Featured researches published by Gregory Costain.


PLOS Genetics | 2012

Rare Copy Number Variations in Adults with Tetralogy of Fallot Implicate Novel Risk Gene Pathways

Candice K. Silversides; Anath C. Lionel; Gregory Costain; Daniele Merico; Ohsuke Migita; Ben Liu; Tracy Yuen; Jessica Rickaby; Bhooma Thiruvahindrapuram; Christian R. Marshall; Stephen W. Scherer; Anne S. Bassett

Structural genetic changes, especially copy number variants (CNVs), represent a major source of genetic variation contributing to human disease. Tetralogy of Fallot (TOF) is the most common form of cyanotic congenital heart disease, but to date little is known about the role of CNVs in the etiology of TOF. Using high-resolution genome-wide microarrays and stringent calling methods, we investigated rare CNVs in a prospectively recruited cohort of 433 unrelated adults with TOF and/or pulmonary atresia at a single centre. We excluded those with recognized syndromes, including 22q11.2 deletion syndrome. We identified candidate genes for TOF based on converging evidence between rare CNVs that overlapped the same gene in unrelated individuals and from pathway analyses comparing rare CNVs in TOF cases to those in epidemiologic controls. Even after excluding the 53 (10.7%) subjects with 22q11.2 deletions, we found that adults with TOF had a greater burden of large rare genic CNVs compared to controls (8.82% vs. 4.33%, p = 0.0117). Six loci showed evidence for recurrence in TOF or related congenital heart disease, including typical 1q21.1 duplications in four (1.18%) of 340 Caucasian probands. The rare CNVs implicated novel candidate genes of interest for TOF, including PLXNA2, a gene involved in semaphorin signaling. Independent pathway analyses highlighted developmental processes as potential contributors to the pathogenesis of TOF. These results indicate that individually rare CNVs are collectively significant contributors to the genetic burden of TOF. Further, the data provide new evidence for dosage sensitive genes in PLXNA2-semaphorin signaling and related developmental processes in human cardiovascular development, consistent with previous animal models.


Human Molecular Genetics | 2013

Rare exonic deletions implicate the synaptic organizer Gephyrin (GPHN) in risk for autism, schizophrenia and seizures

Anath C. Lionel; Andrea K. Vaags; Daisuke Sato; Matthew J. Gazzellone; Elyse Mitchell; Hong Yang Chen; Gregory Costain; Susan Walker; Gerald Egger; Bhooma Thiruvahindrapuram; Daniele Merico; Aparna Prasad; Evdokia Anagnostou; Eric Fombonne; Lonnie Zwaigenbaum; Wendy Roberts; Peter Szatmari; Bridget A. Fernandez; Lyudmila Georgieva; Linda M. Brzustowicz; Katharina M. Roetzer; Wolfgang Kaschnitz; John B. Vincent; Christian Windpassinger; Christian R. Marshall; Rosario R. Trifiletti; Salman Kirmani; George Kirov; Erwin Petek; Jennelle C. Hodge

The GPHN gene codes for gephyrin, a key scaffolding protein in the neuronal postsynaptic membrane, responsible for the clustering and localization of glycine and GABA receptors at inhibitory synapses. Gephyrin has well-established functional links with several synaptic proteins that have been implicated in genetic risk for neurodevelopmental disorders such as autism spectrum disorder (ASD), schizophrenia and epilepsy including the neuroligins (NLGN2, NLGN4), the neurexins (NRXN1, NRXN2, NRXN3) and collybistin (ARHGEF9). Moreover, temporal lobe epilepsy has been linked to abnormally spliced GPHN mRNA lacking exons encoding the G-domain of the gephyrin protein, potentially arising due to cellular stress associated with epileptogenesis such as temperature and alkalosis. Here, we present clinical and genomic characterization of six unrelated subjects, with a range of neurodevelopmental diagnoses including ASD, schizophrenia or seizures, who possess rare de novo or inherited hemizygous microdeletions overlapping exons of GPHN at chromosome 14q23.3. The region of common overlap across the deletions encompasses exons 3-5, corresponding to the G-domain of the gephyrin protein. These findings, together with previous reports of homozygous GPHN mutations in connection with autosomal recessive molybdenum cofactor deficiency, will aid in clinical genetic interpretation of the GPHN mutation spectrum. Our data also add to the accumulating evidence implicating neuronal synaptic gene products as key molecular factors underlying the etiologies of a diverse range of neurodevelopmental conditions.


Genetics in Medicine | 2015

Practical guidelines for managing adults with 22q11.2 deletion syndrome

Wai Lun Alan Fung; Nancy J. Butcher; Gregory Costain; Danielle M. Andrade; Erik Boot; Eva W.C. Chow; Brian Hon-Yin Chung; Cheryl Cytrynbaum; Hanna Faghfoury; Leona Fishman; Sixto García-Miñaúr; Susan R. George; Anthony E. Lang; Gabriela M. Repetto; Andrea Shugar; Candice K. Silversides; Ann Swillen; Therese van Amelsvoort; Donna M. McDonald-McGinn; Anne S. Bassett

22q11.2 Deletion syndrome (22q11.2DS) is the most common microdeletion syndrome in humans, estimated to affect up to 1 in 2,000 live births. Major features of this multisystem condition include congenital anomalies, developmental delay, and an array of early- and later-onset medical and psychiatric disorders. Advances in pediatric care ensure a growing population of adults with 22q11.2DS. Informed by an international panel of multidisciplinary experts and a comprehensive review of the existing literature concerning adults, we present the first set of guidelines focused on managing the neuropsychiatric, endocrine, cardiovascular, reproductive, psychosocial, genetic counseling, and other issues that are the focus of attention in adults with 22q11.2DS. We propose practical strategies for the recognition, evaluation, surveillance, and management of the associated morbidities.Genet Med 17 8, 599–609.


Human Molecular Genetics | 2013

Pathogenic rare copy number variants in community-based schizophrenia suggest a potential role for clinical microarrays

Gregory Costain; Anath C. Lionel; Daniele Merico; Pamela Forsythe; Kathryn Russell; Chelsea Lowther; Tracy Yuen; Janice Husted; Dimitri J. Stavropoulos; Marsha D. Speevak; Eva W.C. Chow; Christian R. Marshall; Stephen W. Scherer; Anne S. Bassett

Individually rare, large copy number variants (CNVs) contribute to genetic vulnerability for schizophrenia. Unresolved questions remain, however, regarding the anticipated yield of clinical microarray testing in schizophrenia. Using high-resolution genome-wide microarrays and rigorous methods, we investigated rare CNVs in a prospectively recruited community-based cohort of 459 unrelated adults with schizophrenia and estimated the minimum prevalence of clinically significant CNVs that would be detectable on a clinical microarray. A blinded review by two independent clinical cytogenetic laboratory directors of all large (>500 kb) rare CNVs in cases and well-matched controls showed that those deemed to be clinically significant were highly enriched in schizophrenia (16.4-fold increase, P < 0.0001). In a single community catchment area, the prevalence of individuals with these CNVs was 8.1%. Rare 1.7 Mb CNVs at 2q13 were found to be significantly associated with schizophrenia for the first time, compared with the prevalence in 23 838 population-based controls (42.9-fold increase, P = 0.0002). Additional novel findings that will facilitate the future clinical interpretation of smaller CNVs in schizophrenia include: (i) a greater proportion of individuals with two or more rare exonic CNVs >10 kb in size (1.5-fold increase, P = 0.0109) in schizophrenia; (ii) the systematic discovery of new candidate genes for schizophrenia; and, (iii) functional gene enrichment mapping highlighting a differential impact in schizophrenia of rare exonic deletions involving diverse functions, including neurodevelopmental and synaptic processes (4.7-fold increase, P = 0.0060). These findings suggest consideration of a potential role for clinical microarray testing in schizophrenia, as is now the suggested standard of care for related developmental disorders like autism.


Journal of Psychiatric Research | 2010

Clinically detectable copy number variations in a Canadian catchment population of schizophrenia

Anne S. Bassett; Gregory Costain; Wai Lun Alan Fung; Kathryn J. Russell; Laura Pierce; Ronak Kapadia; Ronald F. Carter; Eva W.C. Chow; Pamela J. Forsythe

Copy number variation (CNV) is a highly topical area of research in schizophrenia, but the clinical relevance is uncertain and the translation to clinical practice is under-studied. There is a paucity of research involving truly community-based samples of schizophrenia and widely available laboratory techniques. Our objective was to determine the prevalence of clinically detectable CNVs in a community sample of schizophrenia, while mimicking typical clinical practice conditions. We used a brief clinical screening protocol for developmental features in adults with schizophrenia for identifying individuals with 22q11.2 deletions and karyotypically detectable chromosomal anomalies in 204 consecutive patients with schizophrenia from a single Canadian catchment area. Twenty-seven (13.2%) subjects met clinical criteria for a possible syndrome, and 26 of these individuals received clinical genetic testing. Five of these, representing 2.5% of the total sample (95% CI: 0.3%-4.6%), including two of ten patients with mental retardation, had clinically detectable anomalies: two 22q11.2 deletions (1.0%), one 47, XYY, and two other novel CNVs--an 8p23.3-p23.1 deletion and a de novo 19p13.3-p13.2 duplication. The results support the utility of screening and genetic testing to identify genetic syndromes in adults with schizophrenia in clinical practice. Identifying large, rare CNVs (particularly 22q11.2 deletions) can lead to significant changes in management, follow-up, and genetic counselling that are helpful to the patient, family, and clinicians.


Genetics in Medicine | 2012

Functional outcomes of adults with 22q11.2 deletion syndrome

Nancy J. Butcher; Eva W.C. Chow; Gregory Costain; Dominique Karas; Andrew Ho; Anne S. Bassett

Purpose:The 22q11.2 deletion syndrome is a common multisystem genomic disorder with congenital and later-onset manifestations, including congenital heart disease, intellectual disability, and psychiatric illness, that may affect long-term functioning. There are limited data on adult functioning in 22q11.2 deletion syndrome.Methods:We used the Vineland Adaptive Behavior Scales to assess functioning in 100 adults with 22q11.2 deletion syndrome (n = 46 male; mean age = 28.8 (standard deviation = 9.7) years) where intellect ranged from average to borderline (n = 57) to mild intellectual disability (n = 43).Results:More than 75% of the subjects scored in the functional deficit range. Although personal, vocational, and financial demographics confirmed widespread functional impairment, daily living skills and employment were relative strengths. Intelligence quotient was a significant predictor (P < 0.001) of overall and domain-specific adaptive functioning skills. A diagnosis of schizophrenia was a significant predictor (P < 0.05) of overall adaptive functioning, daily living skills, and socialization scores. Notably, congenital heart disease, history of mood/anxiety disorders, sex, and age were not significant predictors of functioning.Conclusion:Despite functional impairment in adulthood that is primarily mediated by cognitive and psychiatric phenotypes, relative strengths in activities of daily living and employment have important implications for services and long-term planning. These results may help to inform expectations about outcomes for patients with 22q11.2 deletion syndrome.Genet Med 2012:14(10):836–843


Genetics in Medicine | 2015

Delineating the 15q13.3 microdeletion phenotype: a case series and comprehensive review of the literature

Chelsea Lowther; Gregory Costain; Dimitri J. Stavropoulos; Rebecca Melvin; Candice K. Silversides; Danielle M. Andrade; Joyce So; Hanna Faghfoury; Anath C. Lionel; Christian R. Marshall; Stephen W. Scherer; Anne S. Bassett

Purpose:Recurrent 15q13.3 deletions are enriched in multiple neurodevelopmental conditions including intellectual disability, autism, epilepsy, and schizophrenia. However, the 15q13.3 microdeletion syndrome remains ill-defined.Methods:We systematically compiled all cases of 15q13.3 deletion published before 2014. We also examined three locally available cohorts to identify new adults with 15q13.3 deletions.Results:We identified a total of 246 cases (133 children, 113 adults) with deletions overlapping or within the 15q13.3 (breakpoint (BP)4–BP5) region, including seven novel adult cases from local cohorts. No BP4–BP5 deletions were identified in 23,838 adult controls. Where known, 15q13.3 deletions were typically inherited (85.4%) and disproportionately of maternal origin (P < 0.0001). Overall, 198 cases (121 children, 77 adults; 80.5%) had at least one neuropsychiatric diagnosis. Accounting for ascertainment, developmental disability/intellectual disability was present in 57.7%, epilepsy/seizures in 28.0%, speech problems in 15.9%, autism spectrum disorder in 10.9%, schizophrenia in 10.2%, mood disorder in 10.2%, and attention deficit hyperactivity disorder in 6.5%. By contrast, major congenital malformations, including congenital heart disease (2.4%), were uncommon. Placenta previa occurred in the pregnancies of four cases.Conclusion:The 15q13.3 microdeletion syndrome is predominantly characterized by neuropsychiatric expression. There are implications for pre- and postnatal detection, genetic counseling, and anticipatory care.Genet Med 17 2, 149–157.


Journal of Medical Genetics | 2011

Sex differences in reproductive fitness contribute to preferential maternal transmission of 22q11.2 deletions

Gregory Costain; Eva W.C. Chow; Candice K. Silversides; Anne S. Bassett

Background 22q11.2 deletion syndrome (22q11.2DS) is the most common microdeletion syndrome in humans. In a minority of patients, the underlying 22q11.2 deletion is found to have been inherited, usually from an affected mother. Serious neuropsychiatric conditions that are commonly associated features of 22q11.2DS could disproportionately affect reproductive success in males. Methods This study compared standard measures of reproductive fitness (mean number of liveborn offspring and proportion childless) in 141 Canadian adults with 22q11.2DS (cases) and their 200 unaffected siblings (controls). Multivariate regression models were used to identify phenotypic predictors of fitness in 22q11.2DS. Results The adults with 22q11.2DS had significantly fewer children than their siblings (p<0.0001, relative fitness=0.28); 85.8% were childless. As expected, younger age (p<0.0001), mental retardation (p=0.0211), and schizophrenia (p=0.0046) were significant negative predictors of reproductive fitness in 22q11.2DS; however, serious congenital heart disease was not. Female sex emerged as a significant positive predictor of fitness independent of the major neuropsychiatric phenotypes (p=0.0082). Post-hoc analyses corroborated these sex differences. Notably, fitness in women with 22q11.2DS with neither mental retardation nor schizophrenia was not significantly different from that of unaffected female siblings. Conclusions There is a strong negative selective pressure against 22q11.2 deletions. This appears to be primarily mediated by the severity of the neuropsychiatric phenotype and an independent sexual selection effect. The latter also contributes to the observed excess of transmitting mothers. These results may have implications both for the evolutionary biology of this structural rearrangement and for genetic counselling and reproductive services for adolescents and adults with 22q11.2DS.


Journal of Intellectual Disability Research | 2012

Caregiver and adult patient perspectives on the importance of a diagnosis of 22q11.2 deletion syndrome

Gregory Costain; Eva W.C. Chow; P. N. Ray; Anne S. Bassett

BACKGROUND Recent advances in genetics are particularly relevant in the field of intellectual disability (ID), where sub-microscopic deletions or duplications of genetic material are increasingly implicated as known or suspected causal factors. Data-driven reports on the impact of providing an aetiological explanation in ID are needed to help justify widespread use of new and expensive genetic technologies. METHODS We conducted a survey of caregivers on the value of a genetic/aetiologic diagnosis of 22q11.2 deletion syndrome (22q11.2DS), the most common microdeletion syndrome in ID. We also surveyed the opinion of a high-functioning subset of adults with 22q11.2DS themselves. We used standard quantitative and qualitative methods to analyse the responses. RESULTS In total, 73 of 118 surveys were returned (61.9%). There was convergence of quantitative and qualitative results, and consistency between adult patient and caregiver responses. A definitive molecular diagnosis of 22q11.2DS was a critical event with diverse positive repercussions, even if occurring later in life. Frequently cited benefits included greater understanding and certainty, newfound sense of purpose and a platform for advocacy, and increased opportunities to optimise medical, social and educational needs. CONCLUSIONS This is the first study to characterise the impact of a diagnosis of this representative microdeletion syndrome on adult patients and their families. The results both validate and expand on the theoretical benefits proposed by clinicians and researchers. The use of genome-wide microarray technologies will provide an increasing number of molecular diagnoses. The importance of a diagnosis of 22q11.2DS demonstrated here therefore has implications for changing attitudes about molecular genetic diagnosis that could benefit individuals with ID of currently unknown cause and their families.


Biological Psychiatry | 2015

Copy Number Variable MicroRNAs in Schizophrenia and Their Neurodevelopmental Gene Targets

William Warnica; Daniele Merico; Gregory Costain; Simon E. Alfred; John Wei; Christian R. Marshall; Stephen W. Scherer; Anne S. Bassett

BACKGROUND MicroRNAs (miRNAs) are key regulators of gene expression in the human genome and may contribute to risk for neuropsychiatric disorders. miRNAs play an acknowledged role in the strongest of genetic risk factors for schizophrenia, 22q11.2 deletions. We hypothesized that in schizophrenia there would be an enrichment of other rare copy number variants (CNVs) that overlap miRNAs. METHODS Using high-resolution genome-wide microarrays and rigorous methods, we compared the miRNA content of rare CNVs in well-characterized cohorts of schizophrenia cases (n = 420) and comparison subjects, excluding 22q11.2 CNVs. We also performed a gene-set enrichment analysis of the predicted miRNA target genes. RESULTS The schizophrenia group was enriched for the proportion of individuals with a rare CNV overlapping a miRNA (3.29-fold increase over comparison subjects, p < .0001). The presence of a rare CNV overlapping a miRNA remained a significant predictor of schizophrenia case status (p = .0072) in a multivariate logistic regression model correcting for total CNV size. In contrast, comparable analyses correcting for CNV size showed no enrichment of rare CNVs overlapping protein-coding genes. A gene-set enrichment analysis indicated that predicted target genes of recurrent CNV-overlapped miRNAs in schizophrenia may be functionally enriched for neurodevelopmental processes, including axonogenesis and neuron projection development. Predicted gene targets driving these results included CAPRIN1, NEDD4, NTRK2, PAK2, RHOA, and SYNGAP1. CONCLUSIONS These data are the first to demonstrate a genome-wide role for CNVs overlapping miRNAs in the genetic risk for schizophrenia. The results provide support for an expanded multihit model of causation, with potential implications for miRNA-based therapeutics.

Collaboration


Dive into the Gregory Costain's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian R. Marshall

The Centre for Applied Genomics

View shared research outputs
Top Co-Authors

Avatar

Stephen W. Scherer

The Centre for Applied Genomics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniele Merico

The Centre for Applied Genomics

View shared research outputs
Top Co-Authors

Avatar

Anath C. Lionel

The Centre for Applied Genomics

View shared research outputs
Top Co-Authors

Avatar

Chelsea Lowther

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge