Annelies Declercq
Ghent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Annelies Declercq.
Veterinary Research | 2013
Annelies Declercq; Freddy Haesebrouck; Wim Van Den Broeck; Peter Bossier; Annemie Decostere
Flavobacterium columnare (F. columnare) is the causative agent of columnaris disease. This bacterium affects both cultured and wild freshwater fish including many susceptible commercially important fish species. F. columnare infections may result in skin lesions, fin erosion and gill necrosis, with a high degree of mortality, leading to severe economic losses. Especially in the last decade, various research groups have performed studies aimed at elucidating the pathogenesis of columnaris disease, leading to significant progress in defining the complex interactions between the organism and its host. Despite these efforts, the pathogenesis of columnaris disease hitherto largely remains unclear, compromising the further development of efficient curative and preventive measures to combat this disease. Besides elaborating on the agent and the disease it causes, this review aims to summarize these pathogenesis data emphasizing the areas meriting further investigation.
Veterinary Research | 2015
Annelies Declercq; Koen Chiers; Wim Van Den Broeck; Jeroen Dewulf; Venessa Eeckhaut; Maria Cornelissen; Peter Bossier; Freddy Haesebrouck; Annemie Decostere
The interactions of Flavobacterium columnare isolates of different virulence with the gills of carp (Cyprinus carpio L.) and rainbow trout (Oncorhynchus mykiss Walbaum) were investigated. Both fish species were exposed to different high (HV) or low virulence (LV) isolates and sacrificed at seven predetermined times post-challenge. Histopathological and ultrastructural examination of carp and rainbow trout inoculated with the HV-isolate disclosed bacterial invasion and concomitant destruction of the gill tissue, gradually spreading from the filament tips towards the base, with outer membrane vesicles surrounding most bacterial cells. In carp, 5-10% of the fish inoculated with the LV-isolate became moribund and their gill tissue displayed the same features as described for the HV-isolate, albeit to a lesser degree. The bacterial numbers retrieved from the gill tissue were significantly higher for HV- compared to LV-isolate challenged carp and rainbow trout. TUNEL-stained and caspase-3-immunostained gill sections demonstrated significantly higher apoptotic cell counts in carp and rainbow trout challenged with the HV-isolate compared to control animals. Periodic acid-Schiff/alcian blue staining demonstrated a significantly higher total gill goblet cell count for HV- and LV-isolate challenged compared to control carp. Moreover, bacterial clusters were embedded in a neutral matrix while being encased by acid mucins, resembling biofilm formation. Eosinophilic granular cell counts were significantly higher in the HV-isolate compared to LV-isolate inoculated and control carp. The present data indicate a high colonization capacity, and the destructive and apoptotic-promoting features of the HV-isolate, and point towards important dynamic host mucin–F. columnare interactions warranting further research.
Journal of Aquatic Animal Health | 2015
Annelies Declercq; Koen Chiers; Freddy Haesebrouck; W. Van den Broeck; Jeroen Dewulf; Maria Cornelissen; Annemie Decostere
Challenge models generating gill lesions typical for columnaris disease were developed for the fry of both Common Carp Cyprinus carpio and Rainbow Trout Oncorhynchus mykiss by means of an immersion challenge and Flavobacterium columnare field isolates were characterized regarding virulence. Carp inoculated with highly virulent isolates revealed diffuse, whitish discoloration of the gills affecting all arches, while in trout mostly unilateral focal lesions, which were restricted to the first two gill arches, occurred. Light microscopic examination of the gills of carp exposed to highly virulent isolates revealed a diffuse loss of branchial structures and desquamation and necrosis of gill epithelium with fusion of filaments and lamellae. In severe cases, large parts of the filaments were replaced with necrotic debris entangled with massive clusters of F. columnare bacterial cells enwrapped in an eosinophilic matrix. In trout, histopathologic lesions were similar but less extensive and much more focal, and well delineated from apparently healthy tissue. Scanning and transmission electron microscopic observations of the affected gills showed long, slender bacterial cells contained in an extracellular matrix and in close contact with the destructed gill tissue. This is the first study to reveal gill lesions typical for columnaris disease at macroscopic, light microscopic, and ultrastructural levels in both Common Carp and Rainbow Trout following a challenge with F. columnare. The results provide a basis for research opportunities to examine pathogen-gill interactions.
Journal of Fish Diseases | 2014
Annelies Declercq; Koen Chiers; W. Van den Broeck; Anamaria Rekecki; S Teerlinck; Dominique Adriaens; Freddy Haesebrouck; Annemie Decostere
1 Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium 2 Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium 3 INVE Technologies, Dendermonde, Belgium 4 Veterinarian for Fish, Private Practice, Gavere, Belgium 5 Research Group Evolutionary Morphology of Vertebrates, Faculty of Sciences, Ghent University, Ghent, Belgium
Veterinary Research | 2016
Annelies Declercq; Johan Aerts; Bart Ampe; Freddy Haesebrouck; Sarah De Saeger; Annemie Decostere
Teleost fish faced with stressful stimuli launch an endocrine stress response through activation of the hypothalamic-pituitary-interrenal axis to release glucocorticoids, in particular cortisol, into the blood. For the majority of bacterial fish pathogens, stress is considered a key factor in disease outbreaks. Based upon studies in mammals, there is considerable evidence to suggest that, besides impairing the immune system, cortisol can have a direct effect on bacterial cells. Hitherto, this intriguing field of microbial endocrinology has remained largely unexplored in aquatic diseases. The present study investigated in vitro the impact of cortisol on phenotypic traits of the fresh water fish pathogen Flavobacterium columnare. Colonies obtained from the highly virulent (HV) isolates resulted in significantly larger and more spreading colonies compared to those from the low virulent (LV) isolates. High cortisol doses added displayed a direct effect on the bacterial cells and induced a significant decrease in colony size. An additional intriguing finding was the inverse relationship between cortisol concentrations added to the broth and the spreading character of colonies retrieved, with higher cortisol doses resulting in less rhizoid to rough and even smooth colony formation (the latter only in the LV trout isolate), suggesting a dose–response effect. The loss of the rhizoid appearance of the F. columnare colonies upon administration of cortisol, and hence the loss of motility, might indicate a phenotypic change to the biofilm state. These findings form the basis for further research on the impact of glucocorticoids on other virulence factors and biofilm formation of F. columnare.
Diseases of Aquatic Organisms | 2015
Annelies Declercq; Koen Chiers; Maarten Soetaert; Aide Lasa; Jesús L. Romalde; Hans Polet; Freddy Haesebrouck; Annemie Decostere
Vibrio tapetis is primarily known as the causative agent for brown ring disease in bivalves, although it has been isolated from cultivated fish during mortalities on farms. Here we describe the first isolation of V. tapetis from wild-caught and subsequently captive-held Dover sole Solea solea. Pathological features consisted of multifocal circular greyish-white skin discolourations evolving into vesicular lesions and subsequent ulcerations on the pigmented side. On the non-pigmented side, multiple circular lesions-white at the center and red at the edges-were evident. Histological examination of the vesicular lesions revealed dermal fluid-filled spaces, collagen tissue necrosis and a mixed inflammatory infiltrate, with large numbers of small rod-shaped bacteria. In the deep skin lesions, loss of scales and dermal connective tissue, with degeneration and fragmentation of the myofibres bordering the ulceration, were noted. Serotyping, DNA-DNA hybridization and REP- and ERIC-PCR techniques showed that the retrieved isolates displayed a profile similar to the representative strain of genotype/serotype O2 which originally was isolated from carpet-shell clam Venerupis decussata and to which isolates obtained from wedge sole Dicologoglossa cuneata were also closely related.
Journal of Thermal Biology | 2017
Fikremariam Geda; Annelies Declercq; Sofie C. Remø; Rune Waagbø; Marta Ribeiro Alves Lourenço; Geert Janssens
Fish species show distinct differences in their muscular concentrations of imidazoles and free amino acids (FAA). This study was conducted to investigate whether metabolic response to mildly elevated water temperature (MEWT) relates to species-dependent muscular concentrations of imidazoles and FAA. Thirteen carp and 17 Nile tilapia, housed one per aquarium, were randomly assigned to either acclimation (25°C) or MEWT (30°C) for 14 days. Main muscular concentrations were histidine (HIS; P<0.001) in carp versus N-α-acetylhistidine (NAH; P<0.001) and taurine (TAU; P=0.001) in tilapia. Although the sum of imidazole (HIS+NAH) and TAU in muscle remained constant over species and temperatures (P>0.05), (NAH+HIS)/TAU ratio was markedly higher in carp versus tilapia, and decreased with MEWT only in carp (P<0.05). Many of the muscular FAA concentrations were higher in carp than in tilapia (P<0.05). Plasma acylcarnitine profile suggested a higher use of AA and fatty acids in carp metabolism (P<0.05). On the contrary, the concentration of 3-hydroxyisovalerylcarnitine, a sink of leucine catabolism, (P=0.009) pointed to avoidance of leucine use in tilapia metabolism. Despite a further increase of plasma longer-chain acylcarnitines in tilapia at MEWT (P=0.009), their corresponding beta-oxidation products (3-hydroxy-longer-chain acylcarnitines) remained constant. Together with higher plasma non-esterified fatty acids (NEFA) in carp (P=0.001), the latter shows that carp, being a fatter fish, more readily mobilises fat than tilapia at MEWT, which coincides with more intensive muscular mobilization of imidazoles. This study demonstrates that fish species differ in their metabolic response to MEWT, which is associated with species-dependent changes in muscle imidazole to taurine ratio.
Journal of Fish Diseases | 2013
Annelies Declercq; Filip Boyen; W. Van den Broeck; Peter Bossier; Attila Karsi; Freddy Haesebrouck; Annemie Decostere
Journal of Fish Diseases | 2017
Miles Lange; Bradley D. Farmer; Annelies Declercq; Eric Peatman; Annemie Decostere; Benjamin H. Beck
Aquaculture Research | 2016
Anamaria Rekecki; Wouter Meeus; Koen Chiers; Jurgen Adriaen; Filip Boyen; Annelies Declercq; Wim Van Den Broeck; Annemie Decostere