Annemieke A. Michels
École Normale Supérieure
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Annemieke A. Michels.
Nature | 2001
Van Trung Nguyen; Tamás Kiss; Annemieke A. Michels; Olivier Bensaude
The transcription of eukaryotic protein-coding genes involves complex regulation of RNA polymerase (Pol) II activity in response to physiological conditions and developmental cues. One element of this regulation involves phosphorylation of the carboxy-terminal domain (CTD) of the largest polymerase subunit by a transcription elongation factor, P-TEFb, which comprises the kinase CDK9 and cyclin T1 or T2 (ref. 1). Here we report that in human HeLa cells more than half of the P-TEFb is sequestered in larger complexes that also contain 7SK RNA, an abundant, small nuclear RNA (snRNA) of hitherto unknown function. P-TEFb and 7SK associate in a specific and reversible manner. In contrast to the smaller P-TEFb complexes, which have a high kinase activity, the larger 7SK/P-TEFb complexes show very weak kinase activity. Inhibition of cellular transcription by chemical agents or ultraviolet irradiation trigger the complete disruption of the P-TEFb/7SK complex, and enhance CDK9 activity. The transcription-dependent interaction of P-TEFb with 7SK may therefore contribute to an important feedback loop modulating the activity of RNA Pol II.
The EMBO Journal | 2004
Annemieke A. Michels; Alessandro Fraldi; Qintong Li; Todd E. Adamson; François Bonnet; Van Trung Nguyen; Stanley C. Sedore; Jason P. Price; David H. Price; Luigi Lania; Olivier Bensaude
The positive transcription elongation factor b (P‐TEFb) plays a pivotal role in productive elongation of nascent RNA molecules by RNA polymerase II. Core active P‐TEFb is composed of CDK9 and cyclin T. In addition, mammalian cell extracts contain an inactive P‐TEFb complex composed of four components, CDK9, cyclin T, the 7SK snRNA and the MAQ1/HEXIM1 protein. We now report an in vitro reconstitution of 7SK‐dependent HEXIM1 association to purified P‐TEFb and subsequent CDK9 inhibition. Yeast three‐hybrid tests and gel‐shift assays indicated that HEXIM1 binds 7SK snRNA directly and a 7SK snRNA‐recognition motif was identified in the central part of HEXIM1 (amino acids (aa) 152–155). Data from yeast two‐hybrid and pull‐down assay on GST fusion proteins converge to a direct binding of P‐TEFb to the HEXIM1 C‐terminal domain (aa 181–359). Consistently, point mutations in an evolutionarily conserved motif (aa 202–205) were found to suppress P‐TEFb binding and inhibition without affecting 7SK recognition. We propose that the RNA‐binding domain of HEXIM1 mediates its association with 7SK and that P‐TEFb then enters the complex through association with HEXIM1.
Molecular and Cellular Biology | 2003
Annemieke A. Michels; Van Trung Nguyen; Alessandro Fraldi; Valérie Labas; Mia Edwards; François Bonnet; Luigi Lania; Olivier Bensaude
ABSTRACT Positive transcription elongation factor b (P-TEFb) comprises a cyclin (T1 or T2) and a kinase, cyclin-dependent kinase 9 (CDK9), which phosphorylates the carboxyl-terminal domain of RNA polymerase II. P-TEFb is essential for transcriptional elongation in human cells. A highly specific interaction among cyclin T1, the viral protein Tat, and the transactivation response (TAR) element RNA determines the productive transcription of the human immunodeficiency virus genome. In growing HeLa cells, half of P-TEFb is kinase inactive and binds to the 7SK small nuclear RNA. We now report on a novel protein termed MAQ1 (for ménage à quatre) that is also present in this complex. Since 7SK RNA is required for MAQ1 to associate with P-TEFb, a structural role for 7SK RNA is proposed. Inhibition of transcription results in the release of both MAQ1 and 7SK RNA from P-TEFb. Thus, MAQ1 cooperates with 7SK RNA to form a novel type of CDK inhibitor. According to yeast two-hybrid analysis and immunoprecipitations from extracts of transfected cells, MAQ1 binds directly to the N-terminal cyclin homology region of cyclins T1 and T2. Since Tat also binds to this cyclin T1 N-terminal domain and since the association between 7SK RNA/MAQ1 and P-TEFb competes with the binding of Tat to cyclin T1, we speculate that the TAR RNA/Tat lentivirus system has evolved to subvert the cellular 7SK RNA/MAQ1 system.
Journal of Biological Chemistry | 1997
Annemieke A. Michels; Bart Kanon; Antonius W. T. Konings; Kenzo Ohtsuka; Olivier Bensaude; Harm H. Kampinga
The existence and function of a Hsp40-Hsp70 chaperone machinery in mammalian cells in vivo was investigated. The rate of heat inactivation of firefly luciferase transiently expressed in hamster O23 fibroblasts was analyzed in cells co-transfected with the gene encoding the human Hsp40 (Ohtsuka, K. (1993) Biochem. Biophys. Res. Commun. 197, 235–240), the human inducible Hsp70 (Hunt, C., and Morimoto, R. I. (1985)Proc. Natl. Acad. Sci. U. S. A. 82, 6455–6459), or a combination of both. Whereas the expression of human Hsp70 alone in hamster cells was sufficient for the protection of firefly luciferase during heat shock, expression of the human Hsp40 alone was not. Rather, this led to a small but significant increase in the heat sensitivity of luciferase. The expression of the human Hsp40 only led to heat protection when the human Hsp70 was expressed as well. Under such conditions the rate of luciferase reactivation from the heat-inactivated state was increased, but the rate of inactivation during heat shock was not affected. Using constructs that direct firefly luciferase either to the cytoplasm or to the nucleus (Michels, A. A., Nguyen, V.-T., Konings, A. W. T., Kampinga, H. H., and Bensaude, O. (1995) Eur. J. Biochem.234, 382–389), it was demonstrated that these chaperone functions are found in both compartments. Our data provide the first evidence on how the Hsp40/Hsp70 chaperone complex acts as heat protector in mammalian cells in vivo.
Journal of Biological Chemistry | 1999
Annemieke A. Michels; Bart Kanon; Olivier Bensaude; Harm H. Kampinga
Heat shock protein (Hsp) 70 and Hsp40 expressed in mammalian cells had been previously shown to cooperate in accelerating the reactivation of heat-denatured firefly luciferase (Michels, A. A., Kanon, B., Konings, A. W. T., Ohtsuka, K., Bensaude, O., and Kampinga, H. H. (1997) J. Biol. Chem. 272, 33283–33289). We now provide further evidence for a functional interaction between Hsp70 and the J-domain of Hsp40 with denatured luciferase resulting in reactivation of heat-denatured luciferase within living mammalian cells. The stimulating effect of Hsp40 on the Hsp70-mediated refolding is lost when the proteins cannot interact as accomplished by their expression in different intracellular compartments. Likewise, the cooperation between Hsp40 and Hsp70 is lost by introduction of a point mutation in the conserved HPD motif of the Hsp40 J-domain or by deletion of the four C-terminal amino acids of Hsp70 (EEVD motif). Most strikingly, co-expression of a truncated protein restricted to the J-domain of Hsp40 had a dominant negative effect on Hsp70-facilitated luciferase reactivation. Taken together, these experiments indicate for the first time that the Hsp70/Hsp40 chaperones functionally interact with a heat-denatured protein within mammalian cells. The dominant negative effect of the Hsp40 J-domain on the activity of Hsp70 demonstrates the importance of J-domain-containing proteins in Hsp70-dependent processes.
Journal of Biological Chemistry | 2005
Cyprien Dulac; Annemieke A. Michels; Alessandro Fraldi; François Bonnet; Van Trung Nguyen; Giuliana Napolitano; Luigi Lania; Olivier Bensaude
The positive transcription elongation factor (P-TEFb) comprises a kinase, CDK9, and a Cyclin T1 or T2. Its activity is inhibited by association with the HEXIM1 or HEXIM2 protein bound to 7SK small nuclear RNA. HEXIM1 and HEXIM2 were found to form stable homo- and hetero-oligomers. Using yeast two-hybrid and transfection assays, we have now shown that the C-terminal domains of HEXIM proteins directly interact with each other. Hydrodynamic parameters measured by glycerol gradient ultracentrifugation and gel-permeation chromatography demonstrate that both purified recombinant and cellular HEXIM1 proteins form highly anisotropic particles. Chemical cross-links suggest that HEXIM1 proteins form dimers. The multimeric nature of HEXIM1 is maintained in P-TEFb·HEXIM1·7SK RNA complexes. Multiple P-TEFb modules are found in the inactive P-TEFb·HEXIM1·7SK complexes. It is proposed that 7SK RNA binding to a HEXIM1 multimer promotes the simultaneous recruitment and hence inactivation of multiple P-TEFb units.
Cell Cycle | 2009
Joanne Lau; Qiao Jing Lew; Gaelle Diribarne; Annemieke A. Michels; Anwesha Dey; Olivier Bensaude; David P. Lane; Sheng-Hao Chao
Hexamethylene bis-acetamide inducible protein 1 (HEXIM1) is an inhibitor of the positive transcription elongation factor b (P-TEFb), which controls RNA polymerase II transcription and human immunodeficiency virus Tat transactivation. In cells, more than half of P-TEFb is associated with HEXIM1 resulting in the inactivation of P-TEFb. Recently, we found that nucleophosmin (NPM), a key factor involved in p53 signaling pathway, interacts with HEXIM1 and activates P-TEFb-dependent transcription. Here we report that human double minute-2 protein (HDM2), a p53-specific E3 ubiquitin ligase, specifically ubiquitinates HEXIM1 through the lysine residues located within the basic region of HEXIM1. However, the HDM2-induced HEXIM1 ubiquitination does not lead to proteasome-mediated protein degradation. Fusion of ubiquitin to HEXIM1 demonstrates stronger inhibition on P-TEFb-dependent transcription. Our results demonstrate that HDM2 functions as a specific E3 ubiquitin ligase for HEXIM1, suggesting a possible role for HEXIM1 ubiquitination in the regulation of P-TEFb activity.
Cell Stress & Chaperones | 2000
Annemieke A. Michels; Bart Kanon; A.W.T. Konings; Olivier Bensaude; Harm H. Kampinga
Abstract Inhibition of translation can result in cytoprotection against heat shock. The mechanism of this protection has remained elusive so far. Here, the thermoprotective effects of the translation inhibitor cycloheximide (CHX) and puromycin were investigated, using as reporter firefly luciferase localized either in the nucleus or in the cytoplasm. A short preincubation of O23 cells with either translation inhibitor was found to attenuate the heat inactivation of a luciferase directed into the cytoplasm, whereas the heat sensitivity of a nuclear-targeted luciferase remained unaffected. After a long-term CHX pretreatment, both luciferases were more heat resistant. Both the cytoplasmic and the nuclear luciferase are protected against heat-induced inactivation in thermotolerant cells and in cells overexpressing heat shock protein (Hsp)70. CHX incubations further attenuated cytoplasmic luciferase inactivation in thermotolerant and in Hsp70 overexpressing cells, even when Hsp70-mediated protection was saturated. It is concluded that protection by translation inhibition is unlikely due to an increase in the pool of free Hsps normally engaged in translation and released from the nascent polypeptide chains on the ribosomes. Rather, a decrease in nascent chains and thermolabile polypeptides may account for the heat resistance promoted by inhibitors of translation.
Transcription | 2018
Annemieke A. Michels; Olivier Bensaude
ABSTRACT Hexim1 acts as a tumor suppressor and is involved in the regulation of innate immunity. It was initially described as a non-coding RNA-dependent regulator of transcription. Here, we detail how 7SK RNA binds to Hexim1 and turns it into an inhibitor of the positive transcription elongation factor (P-TEFb). In addition to its action on P-TEFb, it plays a role in a variety of different mechanisms: it controls the stability of transcription factor components and assists binding of transcription factors to their targets.
Retrovirology | 2005
Alessandro Fraldi; Francesca Varrone; Giuliana Napolitano; Annemieke A. Michels; Barbara Majello; Olivier Bensaude; Luigi Lania