Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hg Joost is active.

Publication


Featured researches published by Hg Joost.


Biochimica et Biophysica Acta | 1994

In vivo glucose uptake and glucose transporter proteins GLUT1 and GLUT4 in heart anf various types of skeletal muscle from streptozotocin-diabetic rats

H. Kainulainen; M. Breiner; Annette Schürmann; A. Marttinen; A. Virjo; Hg Joost

The in vivo glucose uptake and the levels of two glucose transporter proteins (GLUT1 and GLUT4) were measured in heart and in various types of skeletal muscle from streptozotocin-diabetic rats. Diabetes (12-16 weeks) reduced the in vivo glucose uptake (glucose metabolic index, GMI), and the levels of GLUT1 and GLUT4 in heart by 75%, 60% and 70%, respectively. In diaphragm consisting of approximately equal amounts of type I (slow-contracting oxidative), IIa (fast-contracting oxidative) and IIb (fast-contracting glycolytic) fibers, GMI and GLUT4 levels were reduced by 60% and 40%, respectively, with no change in GLUT1 levels. In muscle consisting mainly of type I fibers (e.g., m. soleus), GMI and GLUT4 levels were reduced by 60% and 30%, respectively, whereas GLUT1 levels were unaltered. In mixed-type muscle consisting of type IIa and IIb fibers (e.g., m. plantaris and red part of m. gastrocnemius), GMI and GLUT1 levels were unchanged, whereas GLUT4 levels were decreased by 45%. In contrast, GMI was increased by 100% in type IIb fibers (e.g., the white part of m. gastrocnemius), probably reflecting the 4-fold increase in blood glucose levels, whereas GLUT4 levels were lowered by 55% with no change in GLUT1 levels. These data demonstrate a marked difference in the response of in vivo glucose uptake to long-term hypoinsulinemia between oxidative (type I) and glycolytic (type IIb) fibers. Furthermore, in contrast to the GLUT4, GLUT1 levels are regulated differentially in heart and skeletal muscle in response to streptozotocin-induced diabetes.


PLOS Genetics | 2009

Positional cloning of zinc finger domain transcription factor Zfp69, a candidate gene for obesity-associated diabetes contributed by mouse locus Nidd/SJL

Stephan Scherneck; Matthias Nestler; Heike Vogel; Matthias Blüher; Marcel Dominique Block; Mauricio Berriel Diaz; Stephan Herzig; Nadja Schulz; Marko Teichert; Sina Tischer; Hadi Al-Hasani; Reinhart Kluge; Annette Schürmann; Hg Joost

Polygenic type 2 diabetes in mouse models is associated with obesity and results from a combination of adipogenic and diabetogenic alleles. Here we report the identification of a candidate gene for the diabetogenic effect of a QTL (Nidd/SJL, Nidd1) contributed by the SJL, NON, and NZB strains in outcross populations with New Zealand Obese (NZO) mice. A critical interval of distal chromosome 4 (2.1 Mbp) conferring the diabetic phenotype was identified by interval-specific congenic introgression of SJL into diabetes-resistant C57BL/6J, and subsequent reporter cross with NZO. Analysis of the 10 genes in the critical interval by sequencing, qRT–PCR, and RACE–PCR revealed a striking allelic variance of Zfp69 encoding zinc finger domain transcription factor 69. In NZO and C57BL/6J, a retrotransposon (IAPLTR1a) in intron 3 disrupted the gene by formation of a truncated mRNA that lacked the coding sequence for the KRAB (Krüppel-associated box) and Znf-C2H2 domains of Zfp69, whereas the diabetogenic SJL, NON, and NZB alleles generated a normal mRNA. When combined with the B6.V-Lepob background, the diabetogenic Zfp69SJL allele produced hyperglycaemia, reduced gonadal fat, and increased plasma and liver triglycerides. mRNA levels of the human orthologue of Zfp69, ZNF642, were significantly increased in adipose tissue from patients with type 2 diabetes. We conclude that Zfp69 is the most likely candidate for the diabetogenic effect of Nidd/SJL, and that retrotransposon IAPLTR1a contributes substantially to the genetic heterogeneity of mouse strains. Expression of the transcription factor in adipose tissue may play a role in the pathogenesis of type 2 diabetes.


Molecular and Cellular Biology | 2002

Reduced Sperm Count and Normal Fertility in Male Mice with Targeted Disruption of the ADP-Ribosylation Factor-Like 4 (Arl4) Gene

Annette Schürmann; Koling S; Stephan Jacobs; Paul Saftig; Krauss S; Gunther Wennemuth; Reinhart Kluge; Hg Joost

ABSTRACT The ADP-ribosylation factor-like protein 4 (ARL4) is a 22-kDa GTP-binding protein which is abundant in testes of pubertal and adult rodents but absent in testes from prepubertal animals. During testis development, ARL4 expression starts at day 16 when the spermatogenesis proceeds to the late pachytene. In the adult testis, the ARL4 protein was detected in pre- and postmeiotic cells, spermatocytes, and spermatides, but not in spermatogonia and mature spermatozoa. Mouse Arl4-null mutants generated by targeted disruption of the Arl4 gene were viable and grew normally; male as well as female Arl4−/− mice were fertile. However, inactivation of the Arl4 gene resulted in a significant reduction of testis weight and sperm count by 30 and 60%, respectively, without reduction of litter size or frequency. It is suggested that the disruption of Arl4 produces a moderate retardation of germ cell development, possibly at the stage of meiosis.  


Molecular and Cellular Biology | 2002

Embryonic Lethality Caused by Apoptosis during Gastrulation in Mice Lacking the Gene of the ADP-Ribosylation Factor-Related Protein 1

A.G. Mueller; Markus Moser; Reinhart Kluge; S. Leder; M. Blum; Reinhard Büttner; Hg Joost; Annette Schürmann

ABSTRACT ADP-ribosylation factor (ARF)-related protein 1 (ARFRP1) is a membrane-associated GTPase with significant similarity to the family of ARFs. We have recently shown that ARFRP1 interacts with the Sec7 domain of the ARF-specific guanine nucleotide exchange factor Sec7-1/cytohesin and inhibits the ARF/Sec7-dependent activation of phospholipase D in a GTP-dependent manner. In order to further analyze the function of ARFRP1, we cloned the mouse Arfrp1 gene and generated Arfrp1 null-mutant mice by gene targeting in embryonic stem cells. Heterozygous Arfrp1 mutants developed normally, whereas homozygosity for the mutant allele led to embryonic lethality. Cultured homozygous Arfrp1 null-mutant blastocysts were indistinguishable from wild-type blastocysts. In vivo, they implanted and formed egg cylinder stage embryos that appeared normal until day 5. Between embryonic days 6 and 7, however, apoptotic cell death of epiblast cells occurred in the embryonic ectoderm during gastrulation, as was shown by histological analysis combined with terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling. Epiblast cells that would normally differentiate to mesodermal cells detached from the ectodermal cell layer and were dispersed into the proamniotic cavity. In contrast, the development of extraembryonic structures appeared unaffected. Our results demonstrate that ARFRP1 is necessary for early embryonic development during gastrulation.


Journal of Endocrinology | 2009

Essential role of glucose transporter GLUT3 for post-implantation embryonic development

Stefan Schmidt; Angela Hommel; Verena Gawlik; Robert Augustin; N. Junicke; Simone Florian; Miriam Richter; Diego J. Walther; Dirk Montag; Hg Joost; Annette Schürmann

Deletion of glucose transporter gene Slc2a3 (GLUT3) has previously been reported to result in embryonic lethality. Here, we define the exact time point of growth arrest and subsequent death of the embryo. Slc2a3−/− morulae and blastocysts developed normally, implanted in vivo, and formed egg-cylinder-stage embryos that appeared normal until day 6·0. At day 6·5, apoptosis was detected in the ectodermal cells of Slc2a3−/− embryos resulting in severe disorganization and growth retardation at day 7·5 and complete loss of embryos at day 12·5. GLUT3 was detected in placental cone, in the visceral ectoderm and in the mesoderm of 7·5-day-old wild-type embryos. Our data indicate that GLUT3 is essential for the development of early post-implanted embryos.


Biochimica et Biophysica Acta | 1992

Subcellular distribution and activity of glucose transporter isoforms GLUT1 and GLUT4 transiently expressed in COS-7 cells.

Annette Schürmann; Ingrid Monden; Hg Joost; Konrad Keller

In adipose and muscle cells, the glucose transporter isoform GLUT4 is mainly located in an intracellular, vesicular compartment from which it is translocated to the plasma membrane in response to insulin. In order to test the hypothesis that this preferential targeting of a glucose transporter to an intracellular storage site is conferred only by its primary sequence, we compared the subcellular distribution of the fat/muscle glucose transporter GLUT4 with that of the erythrocyte/brain-type glucose transporter GLUT1 after transient expression in COS-7 cells. Full-length cDNA was ligated into the expression vector pCMV that is driven by the cytomegalovirus promoter, and introduced into COS cells by the DEAE-dextran method. Cells were homogenized and fractionated by differential centrifugation to yield plasma membranes and a Golgi-enriched fraction of intracellular membranes (low-density microsomes). In these membrane fractions, the abundance of glucose transporters was assessed by immunoblotting with specific antibodies against GLUT1 and GLUT4, and their transport activity was assayed after solubilization and reconstitution into lecithin liposomes. Uptake rates of 2-deoxyglucose assayed in parallel samples were higher in cells expressing GLUT1 or GLUT4 as compared with control cells (transfection of pCMV without transporter cDNA). Reconstituted glucose transport activity in plasma membranes was about 5-fold higher after expression of GLUT1 and GLUT4 as compared with control cells. The relative amount of GLUT4 in the low-density microsomes as detected by reconstitution and immunoblotting exceeded that of the GLUT1, but was much lower than that observed in typical insulin-sensitive cells, e.g., rat fat cells or 3T3-L1 adipocytes. These data indicate that COS-7 cells transfected with glucose transporter cDNA express the active transport proteins and can be used for functional studies.


FEBS Letters | 1994

Substitution of conserved tyrosine residues in helix 4 (Y143) and 7 (Y293) affects the activity, but not IAPS-forskolin binding, of the glucose transporter GLUT4

Sonja Wandel; Annette Schürmann; Walter Becker; Scott A. Summers; Michael F. Shanahan; Hg Joost

Six tyrosine residues (Y28, Y143, Y292, Y293, Y308, Y4321) which are conserved in all mammalian glucose transporters were substituted for phenylalanine by site‐directed mutagenesis, and mutant glucose transporters were transiently expressed in COS‐7 cells. Glucose transport activity as assessed by reconstitution of the solubilized transporters into lecithin liposomes was reduced by 70% in the mutant Y143F and appeared to be abolished in Y293F, but was not affected by substitution of Y28, Y292, Y308 and Y432. In contrast, covalent binding of the photolabel 125IAPS‐forskolin was normal in all mutants. Stable expression of the mutants Y143F, Y293F, and Y292F in LTK cells yielded identical results. These data indicate that only two of the 6 conserved helical tyrosines residues, located in helices 4 and 7, are essential for full activity, but not for IAPS‐forskolin binding of the GLUT4.


Lipids in Health and Disease | 2009

Angiogenesis in the New Zealand obese mouse model fed with high fat diet

Adriana Balwierz; Anna Polus; Urszula Razny; Lukasz Wator; Grzegorz Dyduch; Tomaszewska R; Stephan Scherneck; Hg Joost; Aldona Dembinska-Kiec

BackgroundObesity and its complications lead to vascular injury, atherosclerosis, diabetes and pathological angiogenesis. One of the models to study the obesity and its entanglements is the New Zealand Obese mice model. Aim of this study was to check the effect of high fat diet on changes in biochemical parameters as well as on process of angiogenesis in NZO mice.MethodsNZO mice were fed with standard (ST) or high fat (HF) diet for seven weeks. Body weight and serum biochemical parameters were monitored. The PECAM1 positive vessel-like structures immunostaining, as well as the gene expression of the matrigel penetrating cells by microarray (confirmed by real-time PCR method) were analyzed.ResultsMice fed with HF diet developed obesity. Number of newly created vessels with lumen was correlated with hyperglycemia and animal weight gain. The number of PECAM1 positive cells in matrigel tended to increase during HF diet. Microarray results revealed changes in gene expression (activation of the oxidative stress and insulin resistance, inhibition of apoptosis and cell differentiation), however without markers of endothelial cell network maturation.ConclusionObserved changes in the NZO mice on HF diet argue for the hyperglycemia related activation of angiogenesis, leading to the formation of pathological, immature network.


Pflügers Archiv: European Journal of Physiology | 1994

Dissociation of the effects of training on oxidative metabolism, glucose utilisation and GLUT4 levels in skeletal muscle of streptozotocin-diabetic rats

Heikki Kainulainen; J. Komulainen; Hg Joost; V. Vihko

The effects of long-term, moderate physical exercise on in vivo glucose uptake, levels of two glucose transporter proteins (GLUT1 and GLUT4) and activities of various key enzymes of energy metabolism were measured in skeletal muscle from streptozotocin-diabetic rats. Diabetes (12–16 weeks) reduced the in vivo glucose uptake (glucose metabolic index, GMI) in muscle containing mainly type I fibres by 55% but had no effect in muscles containing mainly type IIa and IIb fibres. GMI was increased in the diabetic white skeletal muscle (mainly type IIb fibres) by more than 120%. In contrast to the complex changes in GMI, GLUT4 levels were reduced in all types of skeletal muscle from diabetic rats with no change in GLUT1 levels. Exercise training had no effects on GMI or the glucose transporter levels. Streptozotocin induced diabetes significantly reduced the oxidative capacity of skeletal muscle assayed as the activities of citrate synthase, succinate dehydrogenase and cytochrome c oxidase. Training increased the activities of oxidative enzymes, with this increase being more prominent in the diabetic animals. The present data indicate that long-term streptozotocin-induced diabetes decreases oxidative metabolic capacity and GLUT4 protein levels in skeletal muscle, but that the changes of glucose transport largely depend on the fibre type composition. Moderate training fully reverses the effect of insulinopenia and hyperglycaemia on muscle oxidative metabolism. In contrast to the previous suggestions, the expression of GLUT4 is not correlated with the capacity of oxidative metabolism in skeletal muscle of streptozotocin-diabetic rats.


Experimental and Clinical Endocrinology & Diabetes | 2010

Diet Dependence of Diabetes in the New Zealand Obese (NZO) Mouse: Total Fat, But not Fat Quality or Sucrose Accelerates and Aggravates Diabetes

Farshad Mirhashemi; Stephan Scherneck; Oliver Kluth; Kaiser D; Heike Vogel; Reinhart Kluge; Annette Schürmann; Susanne Neschen; Hg Joost

BACKGROUND Obesity and diabetes in mice can be modified by dietary variables. Here we systematically analysed the effect of the sucrose and fat content and of the fat quality in New Zealand Obese mice, a mouse model of the metabolic syndrome. RESULTS Male NZO mice fed a semi-purified diet with sucrose exhibited an identical weight gain and diabetes incidence as controls without sucrose. In contrast, mice on a chow diet gained weight more slowly and developed diabetes approximately 10 weeks later than those on the semi-purified diet (energy density 3.05 vs. 3.85 kcal/g; fibre content 12.9 vs. 4.7%). In a second experimental series, neither the fat content (10 vs. 40% of the total energy) nor the quality of the fat (lard, safflower oil, or fish oil) of semi-purified diets modified weight gain. However, diabetes started approximately 2 weeks earlier and appeared more severe (blood glucose 30 vs. 20 mmol/l at week 13) in the high-fat diet group (energy density 4.58 kcal/g; fibre content 5.7%). CONCLUSIONS Obesity in NZO mice develops independent of the dietary sucrose or fat content, and of the fat quality. However, the dietary fat content accelerates the onset of diabetes without enhancing adiposity. In contrast, chow diet exerts an anti-adipogenic/anti-diabetogenic effect that appears to be due to its lower caloric density and/or its higher fibre content.

Collaboration


Dive into the Hg Joost's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Vogel

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael F. Shanahan

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge