Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony Gilbert is active.

Publication


Featured researches published by Anthony Gilbert.


Nature Medicine | 2012

Preexisting influenza-specific CD4 + T cells correlate with disease protection against influenza challenge in humans

Tom Wilkinson; Chris Ka-fai Li; Cecilia S C Chui; Arthur K Y Huang; Molly R. Perkins; Julia Liebner; Rob Lambkin-Williams; Anthony Gilbert; John Oxford; Ben Nicholas; Karl J. Staples; Tao Dong; Andrew J. McMichael; Xiao-Ning Xu

Protective immunity against influenza virus infection is mediated by neutralizing antibodies, but the precise role of T cells in human influenza immunity is uncertain. We conducted influenza infection studies in healthy volunteers with no detectable antibodies to the challenge viruses H3N2 or H1N1. We mapped T cell responses to influenza before and during infection. We found a large increase in influenza-specific T cell responses by day 7, when virus was completely cleared from nasal samples and serum antibodies were still undetectable. Preexisting CD4+, but not CD8+, T cells responding to influenza internal proteins were associated with lower virus shedding and less severe illness. These CD4+ cells also responded to pandemic H1N1 (A/CA/07/2009) peptides and showed evidence of cytotoxic activity. These cells are an important statistical correlate of homotypic and heterotypic response and may limit severity of influenza infection by new strains in the absence of specific antibody responses. Our results provide information that may aid the design of future vaccines against emerging influenza strains.


Clinical Infectious Diseases | 2012

Preliminary Assessment of the Efficacy of a T-Cell–Based Influenza Vaccine, MVA-NP+M1, in Humans

Patrick J. Lillie; Tamara Berthoud; Timothy J. Powell; Teresa Lambe; Caitlin E. Mullarkey; Alexandra J. Spencer; Matthew Hamill; Yanchun Peng; Marie Eve Blais; Christopher J. A. Duncan; Susanne H. Sheehy; Tom Havelock; Saul N. Faust; Rob Lambkin Williams; Anthony Gilbert; John Oxford; Tao Dong; Adrian V. S. Hill; Sarah C. Gilbert

A single vaccination with MVA-NP+M1 boosts T-cell responses to conserved influenza antigens in humans. Protection against influenza disease and virus shedding was demonstrated in an influenza virus challenge study.


Antiviral Therapy | 2013

Comparing influenza and RSV viral and disease dynamics in experimentally infected adults predicts clinical effectiveness of RSV antivirals.

Bindiya Bagga; Christopher W. Woods; Timothy Veldman; Anthony Gilbert; Alex Mann; Ganesh Balaratnam; Robert Lambkin-Williams; John Oxford; Micah T. McClain; Tom Wilkinson; Brad Nicholson; Geoffrey S. Ginsburg; John P. DeVincenzo

BACKGROUND Antivirals reduce influenza viral replication and illness measures, particularly if initiated early, within 48 h of symptom onset. Whether experimental antivirals that reduce respiratory syncytial virus (RSV) load would also reduce disease is unknown. This study compares viral and disease dynamics in humans experimentally infected with influenza or RSV. METHODS Clinical strains of RSV-A and influenza A were inoculated intranasally into 20 and 17 healthy volunteers, respectively, on day 0. Symptom scores and nasal washes were performed twice daily, and daily mucus weights were collected. Viral loads in nasal washes were quantified by culture (plaque assay in HEp-2 cells for RSV and by end point dilution in Madin-Darby canine kidney cells for influenza). RESULTS After influenza inoculation, influenza viral load and illness markers increased simultaneously until day 2. Within individual subjects, peak influenza load occurred 0.4 days (95% CI -0.4, 1.3) before peak symptoms. Influenza viral load and disease declined thereafter. After RSV inoculation, a longer incubation period occurred prior to viral detection and symptom onset. RSV load and disease increased together until day 5. Within individual subjects, peak RSV loads occurred 0.2 days (95% CI -0.7, 1.05) before peak symptoms, after which both illness measures and viral load declined together. CONCLUSIONS Viral and disease dynamics in experimental human infections suggest that reducing RSV load, if timed similarly to clinically-effective influenza antivirals, might be expected to have a similar or greater window of opportunity for reducing clinical RSV disease.


The Journal of Infectious Diseases | 2014

Virus-Specific Antibody Secreting Cell, Memory B-cell, and Sero-Antibody Responses in the Human Influenza Challenge Model

Kuan Ying Arthur Huang; Chris Ka-fai Li; Elizabeth A. Clutterbuck; Cecilia Chui; Tom Wilkinson; Anthony Gilbert; John Oxford; Rob Lambkin-Williams; Tzou Yien Lin; Andrew J. McMichael; Xiao-Ning Xu

BACKGROUND  Antibodies play a major role in the protection against influenza virus in human. However, the antibody level is usually short-lived and the cellular mechanisms underlying influenza virus-specific antibody response to acute infection remain unclear. METHODS  We studied the kinetics and magnitude of influenza virus-specific B-cell and serum antibody responses in relation to virus replication during the course of influenza infection in healthy adult volunteers who were previously seronegative and experimentally infected with seasonal influenza H1N1 A/Brisbane/59/07 virus. RESULTS  Our data demonstrated a robust expansion of the virus-specific antibody-secreting cells (ASCs) and memory B cells in the peripheral blood, which correlated with both the throat viral load and the duration of viral shedding. The ASC response was obviously detected on day 7 post-infection when the virus was completely cleared from nasal samples, and serum hemagglutination-inhibition antibodies were still undetectable. On day 28 postinfection, influenza virus-specific B cells were further identified from the circulating compartment of isotype-switched B cells. CONCLUSIONS Virus-specific ASCs could be the earliest marker of B-cell response to a new flu virus infection, such as H7N9 in humans.


Clinical and Vaccine Immunology | 2015

A Synthetic Influenza Virus Vaccine Induces a Cellular Immune Response That Correlates with Reduction in Symptomatology and Virus Shedding in a Randomized Phase Ib Live-Virus Challenge in Humans

Olga Pleguezuelos; Stuart Robinson; Ana Fernandez; Gregory Alan Stoloff; Alex Mann; Anthony Gilbert; Ganesh Balaratnam; Tom Wilkinson; Rob Lambkin-Williams; John Oxford; Wilson Caparros-Wanderley

ABSTRACT Current influenza vaccines elicit primarily antibody-based immunity. They require yearly revaccination and cannot be manufactured until the identification of the circulating viral strain(s). These issues remain to be addressed. Here we report a phase Ib trial of a vaccine candidate (FLU-v) eliciting cellular immunity. Thirty-two males seronegative for the challenge virus by hemagglutination inhibition assay participated in this single-center, randomized, double-blind study. Volunteers received one dose of either the adjuvant alone (placebo, n = 16) or FLU-v (500 μg) and the adjuvant (n = 16), both in saline. Twenty-one days later, FLU-v (n = 15) and placebo (n = 13) volunteers were challenged with influenza virus A/Wisconsin/67/2005 (H3N2) and monitored for 7 days. Safety, tolerability, and cellular responses were assessed pre- and postvaccination. Virus shedding and clinical signs were assessed postchallenge. FLU-v was safe and well tolerated. No difference in the prevaccination FLU-v-specific gamma interferon (IFN-γ) response was seen between groups (average ± the standard error of the mean [SEM] for the placebo and FLU-v, respectively, 1.4-fold ± 0.2-fold and 1.6-fold ± 0.5-fold higher than the negative-control value). Nineteen days postvaccination, the FLU-v group, but not the placebo group, developed FLU-v-specific IFN-γ responses (8.2-fold ± 3.9-fold versus 1.3-fold ± 0.1-fold higher than the negative-control value [average ± SEM] for FLU-v versus the placebo [P = 0.0005]). FLU-v-specific cellular responses also correlated with reductions in both viral titers (P = 0.01) and symptom scores (P = 0.02) postchallenge. Increased cellular immunity specific to FLU-v correlates with reductions in both symptom scores and virus loads. (This study has been registered at ClinicalTrials.gov under registration no. NCT01226758 and at hra.nhs.uk under EudraCT no. 2009-014716-35.)


Journal of Clinical Virology | 2013

Longitudinal analysis of leukocyte differentials in peripheral blood of patients with acute respiratory viral infections

Micah T. McClain; Lawrence P. Park; Bradly P. Nicholson; Timothy Veldman; Aimee K. Zaas; Ron Turner; Robert Lambkin-Williams; Anthony Gilbert; Geoffrey S. Ginsburg; Christopher W. Woods

BACKGROUND Leukocyte counts and differentials are commonly acquired in patients with suspected respiratory viral infections and may contribute diagnostic information. However, most published work is limited to a single timepoint at initial presentation to a medical provider, which may correspond to widely varying points in the course of disease. OBJECTIVES To examine the temporal development and time-dependent utility of routine leukocyte differentials in the diagnosis of respiratory viral infections. STUDY DESIGN We analyzed data from recent experimental human challenges with influenza A/H3N2, human rhinovirus (HRV), and respiratory syncytial virus (RSV). Routine clinical lab cell counts and differentials were measured daily from the time period immediately prior to inoculation through the eventual resolution of symptomatic disease. RESULTS Approximately 50% of challenged individuals developed symptoms and viral shedding consistent with clinical disease. Subpopulations of WBC showed marked differences between symptomatic and asymptomatic individuals over time, but these changes were much more profound and consistent in influenza infection. Influenza-infected subjects develop both relative lymphopenia and relative monocytosis, both of which closely mirror symptom development in time. A lymphocyte:monocyte ratio of <2 correctly classifies 100% of influenza (but not RSV or HRV) infected subjects at the time of maximal symptoms. CONCLUSIONS Leukocyte differentials may suggest a viral etiology in patients with upper respiratory infection, but are not sufficient to allow differentiation between common viruses. Timing of data acquisition relative to the disease course is a key component in determining the utility of these tests.


PLOS ONE | 2013

Correlation between Human Leukocyte Antigen Class II Alleles and HAI Titers Detected Post-Influenza Vaccination

Alastair J. Moss; Fiona Gaughran; Aliyye Karasu; Anthony Gilbert; Alex Mann; Colin M. Gelder; John Oxford; Henry Stephens; Rob Lambkin-Williams

Influenza is a major cause of morbidity and mortality. Despite vaccination, many elderly recipients do not develop a protective antibody response. To determine whether Human Leukocyte Antigen (HLA) alleles modulate seroprotection to influenza, a cohort of HLA class II-typed high-risk vaccine recipients was investigated. Haemagglutinin inhibition (HAI) titres were measured 14–40 days post-subunit vaccination. Seroprotection was defined as HAI titres reaching 40 or greater for all three vaccine strains. HLA-DRB1*04∶01 and HLA-DPB1*04∶01 alleles were detected at higher frequencies in seroprotected compared with non-seroprotected individuals. Thus, the presence of certain HLA class II alleles may determine the magnitude of antibody responses to influenza vaccination.


Clinical and Experimental Immunology | 2016

Differential evolution of peripheral cytokine levels in symptomatic and asymptomatic responses to experimental influenza virus challenge.

Micah T. McClain; Ricardo Henao; Jason Williams; Bradly P. Nicholson; Timothy Veldman; Lori L. Hudson; Ephraim L. Tsalik; Robert Lambkin-Williams; Anthony Gilbert; Alex Mann; Geoffrey S. Ginsburg; Christopher W. Woods

Exposure to influenza virus triggers a complex cascade of events in the human host. In order to understand more clearly the evolution of this intricate response over time, human volunteers were inoculated with influenza A/Wisconsin/67/2005 (H3N2), and then had serial peripheral blood samples drawn and tested for the presence of 25 major human cytokines. Nine of 17 (53%) inoculated subjects developed symptomatic influenza infection. Individuals who will go on to become symptomatic demonstrate increased circulating levels of interleukin (IL)‐6, IL‐8, IL‐15, monocyte chemotactic protein (MCP)‐1 and interferon (IFN) gamma‐induced protein (IP)‐10 as early as 12–29 h post‐inoculation (during the presymptomatic phase), whereas challenged patients who remain asymptomatic do not. Overall, the immunological pathways of leucocyte recruitment, Toll‐like receptor (TLR)‐signalling, innate anti‐viral immunity and fever production are all over‐represented in symptomatic individuals very early in disease, but are also dynamic and evolve continuously over time. Comparison with simultaneous peripheral blood genomics demonstrates that some inflammatory mediators (MCP‐1, IP‐10, IL‐15) are being expressed actively in circulating cells, while others (IL‐6, IL‐8, IFN‐α and IFN‐γ) are probable effectors produced locally at the site of infection. Interestingly, asymptomatic exposed subjects are not quiescent either immunologically or genomically, but instead exhibit early and persistent down‐regulation of important inflammatory mediators in the periphery. The host inflammatory response to influenza infection is variable but robust, and evolves over time. These results offer critical insight into pathways driving influenza‐related symptomatology and offer the potential to contribute to early detection and differentiation of infected hosts.


PLOS ONE | 2016

An Intranasal Proteosome-Adjuvanted Trivalent Influenza Vaccine Is Safe, Immunogenic & Efficacious in the Human Viral Influenza Challenge Model. Serum IgG & Mucosal IgA Are Important Correlates of Protection against Illness Associated with Infection

Rob Lambkin-Williams; Colin M. Gelder; Richard Broughton; Corey Mallett; Anthony Gilbert; Alex Mann; David Z. Z. He; John Oxford; David W. Burt

Introduction A Proteosome-adjuvanted trivalent inactivated influenza vaccine (P-TIV) administered intra-nasally was shown to be safe, well tolerated and immunogenic in both systemic and mucosal compartments, and effective at preventing illness associated with evidence of influenza infection. Methods In two separate studies using the human viral challenge model, subjects were selected to be immunologically naive to A/Panama/2007/1999 (H3N2) virus and then dosed via nasal spray with one of three regimens of P-TIV or placebo. One or two doses, 15 μg or 30 μg, were given either once only or twice 14 days apart (1 x 30 μg, 2 x 30 μg, 2 x 15 μg) and subjects were challenged with A/Panama/2007/1999 (H3N2) virus. Immune responses to the vaccine antigens were measured by haemagglutination inhibition assay (HAI) and nasal wash secretory IgA (sIgA) antibodies. Results Vaccine reactogenicity was mild, predictable and generally consistent with earlier Phase I studies with this vaccine. Seroconversion to A/Panama/2007/1999 (H3N2), following vaccination but prior to challenge, occurred in 57% to 77% of subjects in active dosing groups and 2% of placebo subjects. The greatest relative rise in sIgA, following vaccination but prior to challenge, was observed in groups that received 2 doses. Conclusion Intranasal vaccination significantly protected against influenza (as defined by influenza symptoms combined with A/Panama seroconversion) following challenge with A/Panama/2007/1999 (H3N2). When data were pooled from both studies, efficacy ranged from 58% to 82% in active dosing groups for any influenza symptoms with seroconversion, 67% to 85% for systemic or lower respiratory illness and seroconversion, and 65% to 100% for febrile illness and seroconversion. The two dose regimen was found to be superior to the single dose regimen. In this study, protection against illness associated with evidence of influenza infection (evidence determined by seroconversion) following challenge with virus, significantly correlated with pre-challenge HAI titres (p = 0.0003) and mucosal sIgA (p≤0.0001) individually, and HAI (p = 0.028) and sIgA (p = 0.0014) together. HAI and sIgA levels were inversely related to rates of illness. Trial Registration ClinicalTrials.gov NCT02522754


Open Forum Infectious Diseases | 2016

A Genomic Signature of Influenza Infection Shows Potential for Presymptomatic Detection, Guiding Early Therapy, and Monitoring Clinical Responses

Micah T. McClain; Bradly P. Nicholson; Lawrence P. Park; Tzu-Yu Liu; Alfred O. Hero; Ephraim L. Tsalik; Aimee K. Zaas; Timothy Veldman; Lori L. Hudson; Robert Lambkin-Williams; Anthony Gilbert; Thomas Burke; Marshall Nichols; Geoffrey S. Ginsburg; Christopher W. Woods

Early, presymptomatic intervention with oseltamivir (corresponding to the onset of a published host-based genomic signature of influenza infection) resulted in decreased overall influenza symptoms (aggregate symptom scores of 23.5 vs 46.3), more rapid resolution of clinical disease (20 hours earlier), reduced viral shedding (total median tissue culture infectious dose [TCID50] 7.4 vs 9.7), and significantly reduced expression of several inflammatory cytokines (interferon-γ, tumor necrosis factor-α, interleukin-6, and others). The host genomic response to influenza infection is robust and may provide the means for early detection, more timely therapeutic interventions, a meaningful reduction in clinical disease, and an effective molecular means to track response to therapy.

Collaboration


Dive into the Anthony Gilbert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Oxford

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Robert Lambkin-Williams

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tom Wilkinson

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge