Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony J. Chalmers is active.

Publication


Featured researches published by Anthony J. Chalmers.


International Journal of Radiation Oncology Biology Physics | 2008

Replication-dependent radiosensitization of human glioma cells by inhibition of poly(ADP-Ribose) polymerase: mechanisms and therapeutic potential

Dana A. Löser; Anthony J. Chalmers

PURPOSE Current treatments for glioblastoma multiforme are inadequate and limited by the radiation sensitivity of normal brain. Because glioblastoma multiforme are rapidly proliferating tumors within nondividing normal tissue, the therapeutic ratio might be enhanced by combining radiotherapy with a replication-specific radiosensitizer. KU-0059436 (AZD2281) is a potent and nontoxic inhibitor of poly(ADP-ribose) polymerase-1 (PARP-1) undergoing a Phase II clinical trial as a single agent. METHODS AND MATERIALS Based on previous observations that the radiosensitizing effects of PARP inhibition are more pronounced in dividing cells, we investigated the mechanisms underlying radiosensitization of human glioma cells by KU-0059436, evaluating the replication dependence of this effect and its therapeutic potential. RESULTS KU-0059436 increased the radiosensitivity of four human glioma cell lines (T98G, U373-MG, UVW, and U87-MG). Radiosensitization was enhanced in populations synchronized in S phase and abrogated by concomitant exposure to aphidicolin. Sensitization was further enhanced when the inhibitor was combined with a fractionated radiation schedule. KU-0059436 delayed repair of radiation-induced DNA breaks and was associated with a replication-dependent increase in gammaH2AX and Rad51 foci. CONCLUSION The results of our study have shown that KU-0059436 increases radiosensitivity in a replication-dependent manner that is enhanced by fractionation. A mechanism is proposed whereby PARP inhibition increases the incidence of collapsed replication forks after ionizing radiation, generating persistent DNA double-strand breaks. These observations indicate that KU-0059436 is likely to enhance the therapeutic ratio achieved by radiotherapy in the treatment of glioblastoma multiforme. A Phase I clinical trial is in development.


Nature Cell Biology | 2015

Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma.

Saverio Tardito; Anaïs Oudin; Shafiq U. Ahmed; Fred Fack; Olivier Keunen; Liang Zheng; Hrvoje Miletic; Per Øystein Sakariassen; Adam Weinstock; Allon Wagner; Susan L. Lindsay; Andreas K. Hock; Susan C. Barnett; Eytan Ruppin; Svein H. Mørkve; Morten Lund-Johansen; Anthony J. Chalmers; Rolf Bjerkvig; Simone P. Niclou; Eyal Gottlieb

L-Glutamine (Gln) functions physiologically to balance the carbon and nitrogen requirements of tissues. It has been proposed that in cancer cells undergoing aerobic glycolysis, accelerated anabolism is sustained by Gln-derived carbons, which replenish the tricarboxylic acid (TCA) cycle (anaplerosis). However, it is shown here that in glioblastoma (GBM) cells, almost half of the Gln-derived glutamate (Glu) is secreted and does not enter the TCA cycle, and that inhibiting glutaminolysis does not affect cell proliferation. Moreover, Gln-starved cells are not rescued by TCA cycle replenishment. Instead, the conversion of Glu to Gln by glutamine synthetase (GS; cataplerosis) confers Gln prototrophy, and fuels de novo purine biosynthesis. In both orthotopic GBM models and in patients, 13C–glucose tracing showed that GS produces Gln from TCA-cycle-derived carbons. Finally, the Gln required for the growth of GBM tumours is contributed only marginally by the circulation, and is mainly either autonomously synthesized by GS-positive glioma cells, or supplied by astrocytes.


Seminars in Radiation Oncology | 2010

Poly(ADP-Ribose) Polymerase Inhibition as a Model for Synthetic Lethality in Developing Radiation Oncology Targets

Anthony J. Chalmers; Mina Lakshman; Norman Chan; Robert G. Bristow

DNA double-strand breaks (DSBs) induced during clinical radiotherapy are potent inducers of cell death. Poly(ADP-ribose) polymerase (PARP)-1 is a 113-kD nuclear protein that binds to both single- and double-strand DNA breaks and is actively involved in DNA single-strand break repair and base excision repair. Recently, potent and specific chemical inhibitors of PARP activity have been developed that are effective tumor cell radiosensitizers in vitro and in vivo. Because of synthetic lethality, PARP inhibitors may be highly effective as a single agent in patients whose tumors have germline or somatic defects in DNA damage and repair genes (eg, ATM, BRCA1, BRCA2, and NBS1) or defects in genes involved in phosphatase and tensin homolog gene (PTEN) signaling. Defects in specific DNA repair pathways also appear to enhance the radiosensitizing effects of PARP inhibition. In addition to inherent genetics, tumor cells may also be preferentially sensitized to radiotherapy by diverse mechanisms, including proliferation-dependent radiosensitization, targeting of the endothelium and tumor vasculature, and increased sensitivity to PARP inhibitors within repair-deficient hypoxic cells. Because biologically active doses of PARP inhibitors caused minimal toxicity in phase I to II clinical trials, careful scheduling of these agents in combination with radiotherapy may maintain the therapeutic ratio and increase tumor radiocurability.


Molecular Cell | 2015

Limited Mitochondrial Permeabilization Causes DNA Damage and Genomic Instability in the Absence of Cell Death

Gabriel Ichim; Jonathan Lopez; Shafiq U. Ahmed; Evangelos Giampazolias; M. Eugenia Delgado; Martina Haller; Joel S. Riley; Susan M. Mason; Dimitris Athineos; Melissa J. Parsons; Bert van de Kooij; Lisa Bouchier-Hayes; Anthony J. Chalmers; Rogier W. Rooswinkel; Andrew Oberst; Karen Blyth; Markus Rehm; Daniel J. Murphy; Stephen W. G. Tait

Summary During apoptosis, the mitochondrial outer membrane is permeabilized, leading to the release of cytochrome c that activates downstream caspases. Mitochondrial outer membrane permeabilization (MOMP) has historically been thought to occur synchronously and completely throughout a cell, leading to rapid caspase activation and apoptosis. Using a new imaging approach, we demonstrate that MOMP is not an all-or-nothing event. Rather, we find that a minority of mitochondria can undergo MOMP in a stress-regulated manner, a phenomenon we term “minority MOMP.” Crucially, minority MOMP leads to limited caspase activation, which is insufficient to trigger cell death. Instead, this caspase activity leads to DNA damage that, in turn, promotes genomic instability, cellular transformation, and tumorigenesis. Our data demonstrate that, in contrast to its well-established tumor suppressor function, apoptosis also has oncogenic potential that is regulated by the extent of MOMP. These findings have important implications for oncogenesis following either physiological or therapeutic engagement of apoptosis.


Molecular Cancer Therapeutics | 2009

Enhanced radiosensitization of human glioma cells by combining inhibition of poly(ADP-ribose) polymerase with inhibition of heat shock protein 90

Keith W. Caldecott; Anthony J. Chalmers

Glioblastoma multiforme (GBM) are the most common primary brain tumor and are resistant to standard therapies. The nondividing nature of normal brain provides an opportunity to enhance the therapeutic ratio by combining radiation with inhibitors of replication-specific DNA repair pathways. Based on our previous findings that inhibition of poly(ADP-ribose) polymerase (PARP) increases radiosensitivity of human glioma cells in a replication-dependent manner and generates excess DNA breaks that are repaired by homologous recombination (HR), we hypothesized that inhibition of HR would amplify the replication-specific radiosensitizing effects of PARP inhibition. Specific inhibitors of HR are not available, but the heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) has been reported to inhibit HR function. The radiosensitizing effects of 17-AAG and the PARP inhibitor olaparib were assessed, and the underlying mechanisms explored. 17-AAG down-regulated Rad51 and BRCA2 protein levels, abrogated induction of Rad51 foci by radiation, and inhibited HR measured by the I-Sce1 assay. Individually, 17-AAG and olaparib had modest, replication-dependent radiosensitizing effects on T98G glioma cells. Additive radiosensitization was observed with combination treatment, mirrored by increases in γH2AX foci in G2-phase cells. Unlike olaparib, 17-AAG did not increase radiation sensitivity of Chinese hamster ovary cells, indicating tumor specificity. However, 17-AAG also enhanced radiosensitivity in HR-deficient cells, indicating that its effects were only partially mediated by HR inhibition. Additional mechanisms are likely to include destabilization of oncoproteins that are up-regulated in GBM. 17-AAG is therefore a tumor-specific, replication-dependent radiosensitizer that enhances the effects of PARP inhibition. This combination has therapeutic potential in the management of GBM. [Mol Cancer Ther 2009;8(8):2243–54]


Molecular Oncology | 2011

Radioresistance of glioma stem cells: Intrinsic characteristic or property of the ‘microenvironment‐stem cell unit’?

Mariella Mannino; Anthony J. Chalmers

There is increasing evidence that glioblastoma possess ‘stem‐like’ cells, low concentrations of which can initiate a tumour. It has been proposed that these cells are radioresistant, and that this property contributes to the poor treatment outcomes of these tumours. In this paper we propose that radioresistance is not simply an intrinsic characteristic of glioma stem cells but a result of interactions between these cells and microenvironmental factors, i.e. the ‘microenvironment – stem cell unit’. The critical role of the microenvironment, along with glioma stem cells, is supported directly or indirectly by the following observations: glioma stem cells have been shown to reside preferentially in specific niches, the characteristics of which are known to influence cellular responses to radiation; radiation modifies environmental factors; and, contrarily to the consistency of clinical data, in vitro experiments have reported a wide variety in the radiation response of these cells.


British Journal of Cancer | 2012

Topoisomerase I inhibition in colorectal cancer: biomarkers and therapeutic targets

Duncan C. Gilbert; Anthony J. Chalmers; Sherif F. El-Khamisy

The topoisomerase I (Top 1) poison irinotecan is an important component of the modern treatment of colorectal cancer. By stabilising Top 1-DNA complexes, irinotecan generates Top 1-linked DNA single-strand breaks that can evolve into double-strand breaks and ultimately cause cell death. However, cancer cells may overcome cell killing by releasing the stalled topoisomerase from DNA termini, thereby reducing the efficacy of Top 1 poisons in clinics. Thus, understanding the DNA repair mechanisms involved in the repair of Top 1-mediated DNA damage provides a useful tool to identify potential biomarkers that predict response to this class of chemotherapy. Furthermore, targeting these pathways could enhance the therapeutic benefits of Top 1 poisons. In this review, we describe the cellular mechanisms and consequences of targeting Top 1 activity in cells. We summarise preclinical data and discuss the potential clinical utility of small-molecule inhibitors of the key proteins.


International Journal of Radiation Oncology Biology Physics | 2009

Cytotoxic effects of temozolomide and radiation are additive- and schedule-dependent

Anthony J. Chalmers; Elliot M. Ruff; Christine Martindale; Nadia Lovegrove; Susan Short

PURPOSE Despite aggressive therapy comprising radical radiation and temozolomide (TMZ) chemotherapy, the prognosis for patients with glioblastoma multiforme (GBM) remains poor, particularly if tumors express O(6)-methylguanine-DNA-methyltransferase (MGMT). The interactions between radiation and TMZ remain unclear and have important implications for scheduling and for developing strategies to improve outcomes. METHODS AND MATERIALS Factors determining the effects of combination therapy on clonogenic survival, cell-cycle checkpoint signaling and DNA repair were investigated in four human glioma cell lines (T98G, U373-MG, UVW, U87-MG). RESULTS Combining TMZ and radiation yielded additive cytotoxicity, but only when TMZ was delivered 72 h before radiation. Radiosensitization was not observed. TMZ induced G2/M cell-cycle arrest at 48-72 h, coincident with phosphorylation of Chk1 and Chk2. Additive G2/M arrest and Chk1/Chk2 phosphorylation was only observed when TMZ preceded radiation by 72 h. The ataxia-telangiectasia mutated (ATM) inhibitor KU-55933 increased radiation sensitivity and delayed repair of radiation-induced DNA breaks, but did not influence TMZ effects. The multiple kinase inhibitor caffeine enhanced the cytotoxicity of chemoradiation and exacerbated DNA damage. CONCLUSIONS TMZ is not a radiosensitizing agent but yields additive cytotoxicity in combination with radiation. Our data indicate that TMZ treatment should commence at least 3 days before radiation to achieve maximum benefit. Activation of G2/M checkpoint signaling by TMZ and radiation has a cytoprotective effect that can be overcome by dual inhibition of ATM and ATR. More specific inhibition of checkpoint signaling will be required to increase treatment efficacy without exacerbating toxicity.


Cancer Research | 2015

Selective inhibition of parallel DNA damage response pathways optimizes radiosensitization of glioblastoma stem-like cells

Shafiq U. Ahmed; Ross Carruthers; Lesley Gilmour; Salih Yildirim; Colin Watts; Anthony J. Chalmers

Glioblastoma is the most common form of primary brain tumor in adults and is essentially incurable. Despite aggressive treatment regimens centered on radiotherapy, tumor recurrence is inevitable and is thought to be driven by glioblastoma stem-like cells (GSC) that are highly radioresistant. DNA damage response pathways are key determinants of radiosensitivity but the extent to which these overlapping and parallel signaling components contribute to GSC radioresistance is unclear. Using a panel of primary patient-derived glioblastoma cell lines, we confirmed by clonogenic survival assays that GSCs were significantly more radioresistant than paired tumor bulk populations. DNA damage response targets ATM, ATR, CHK1, and PARP1 were upregulated in GSCs, and CHK1 was preferentially activated following irradiation. Consequently, GSCs exhibit rapid G2-M cell-cycle checkpoint activation and enhanced DNA repair. Inhibition of CHK1 or ATR successfully abrogated G2-M checkpoint function, leading to increased mitotic catastrophe and a modest increase in radiation sensitivity. Inhibition of ATM had dual effects on cell-cycle checkpoint regulation and DNA repair that were associated with greater radiosensitizing effects on GSCs than inhibition of CHK1, ATR, or PARP alone. Combined inhibition of PARP and ATR resulted in a profound radiosensitization of GSCs, which was of greater magnitude than in bulk populations and also exceeded the effect of ATM inhibition. These data demonstrate that multiple, parallel DNA damage signaling pathways contribute to GSC radioresistance and that combined inhibition of cell-cycle checkpoint and DNA repair targets provides the most effective means to overcome radioresistance of GSC.


Current Medicinal Chemistry | 2012

DNA repair and resistance to topoisomerase I inhibitors: mechanisms, biomarkers and therapeutic targets.

Meryem Alagoz; Duncan C. Gilbert; Sherif F. El-Khamisy; Anthony J. Chalmers

Irinotecan and topotecan are derivatives of the naturally occurring cytotoxic compound camptothecin that are used in the treatment of patients with colorectal cancer, either as single agents or in combination with radiotherapy and/or other chemotherapy drugs. They are inhibitors of DNA topoisomerase I (Top I) and exert their cytotoxic effects in replicating cells by inducing DNA strand breaks. A wide range of DNA repair proteins is involved in the recognition and repair of these breaks, and depletion or inhibition of some of these proteins increases the cytotoxic effects of Top I inhibitors. Building on these laboratory observations, ongoing translational research is aiming to establish whether this mechanistic information can be used to improve the treatment of patients with certain types of cancer. Two potential strategies are under investigation: (1) individualising treatment by evaluating levels and/or patterns of expression of DNA repair proteins that predict clinical response to Top I inhibitors, and (2) developing small molecule inhibitors of these repair enzymes to overcome tumour resistance and improve outcomes. This review summarises the current status of these research endeavours, focusing on the key roles of tyrosyl DNA phosphodiesterase 1 (Tdp1) and poly(ADP-ribose) polymerase (PARP), and examines the pre-clinical and clinical data that support the potential value of these and other DNA repair proteins as predictive markers and therapeutic targets. Since irinotecan is increasingly being combined with radiotherapy, the potential for these proteins to act as predictive biomarkers for both Top I inhibitors and radiation is proposed, and the possibility of synergistic potentiation of chemoradiation regimes by Tdp1 and/or PARP inhibitors is considered.

Collaboration


Dive into the Anthony J. Chalmers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allan B. James

Beatson West of Scotland Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Colin Watts

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge