Anthony J. Channon
University of Liverpool
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anthony J. Channon.
Journal of Anatomy | 2009
Anthony J. Channon; Michael Günther; Robin H. Crompton; Evie Vereecke
Gibbons utilize a number of locomotor modes in the wild, including bipedalism, leaping and, most of all, brachiation. Each locomotor mode puts specific constraints on the morphology of the animal; in some cases these may be complementary, whereas in others they may conflict. Despite several studies of the locomotor biomechanics of gibbons, very little is known about the musculoskeletal architecture of the limbs. In this study, we present quantitative anatomical data of the hind limb for four species of gibbon (Hylobates lar, H. moloch, H. pileatus and Symphalangus syndactylus). Muscle mass and fascicle lengths were obtained from all of the major hind limb muscles and the physiological cross‐sectional area was calculated and scaled to remove the effect of body size. The results clearly indicate that, for all of the species studied, the major hip, knee and ankle extensors are short‐fascicled and pennate. The major hip and knee flexors, however, are long‐fascicled, parallel muscles with relatively small physiological cross‐sectional areas. We hypothesize that the short‐fascicled muscles could be coupled with a power‐amplifying mechanism and are predominantly useful in leaping. The long‐fascicled knee and hip flexors are adapted for a wide range of joint postures and can play a role in flexing the legs during brachiation.
American Journal of Physical Anthropology | 2010
Anthony J. Channon; Robin H. Crompton; Michael Günther; Kristiaan D'Août; Evie Vereecke
Gibbons are skilled brachiators but they are also highly capable leapers, crossing distances in excess of 10 m in the wild. Despite this impressive performance capability, no detailed biomechanical studies of leaping in gibbons have been undertaken to date. We measured ground reaction forces and derived kinematic parameters from high-speed videos during gibbon leaps in a captive zoo environment. We identified four distinct leap types defined by the number of feet used during take-off and the orientation of the trunk, orthograde single-footed, orthograde two-footed, orthograde squat, and pronograde single-footed leaps. The center of mass trajectories of three of the four leap types were broadly similar, with the pronograde single-footed leaps exhibiting less vertical displacement of the center of mass than the other three types. Mechanical energy at take-off was similar in all four leap types. The ratio of kinetic energy to mechanical energy was highest in pronograde single-footed leaps and similar in the other three leap types. The highest mechanical work and power were generated during orthograde squat leaps. Take-off angle decreased with take-off velocity and the hind limbs showed a proximal to distal extension sequence during take-off. In the forelimbs, the shoulder joints were always flexed at take-off, while the kinematics of the distal joints (elbow and wrist joints) were variable between leaps. It is possible that gibbons may utilize more metabolically expensive orthograde squat leaps when a safe landing is uncertain, while more rapid (less expensive) pronograde single-footed leaps might be used during bouts of rapid locomotion when a safe landing is more certain.
The Journal of Experimental Biology | 2011
Anthony J. Channon; Michael Günther; Robin H. Crompton; Kristiaan D'Août; Holger Preuschoft; Evie Vereecke
SUMMARY The storage and recovery of elastic strain energy in the musculoskeletal systems of locomoting animals has been extensively studied, yet the external environment represents a second potentially useful energy store that has often been neglected. Recent studies have highlighted the ability of orangutans to usefully recover energy from swaying trees to minimise the cost of gap crossing. Although mechanically similar mechanisms have been hypothesised for wild leaping primates, to date no such energy recovery mechanisms have been demonstrated biomechanically in leapers. We used a setup consisting of a forceplate and two high-speed video cameras to conduct a biomechanical analysis of captive gibbons leaping from stiff and compliant poles. We found that the gibbons minimised pole deflection by using different leaping strategies. Two leap types were used: slower orthograde leaps and more rapid pronograde leaps. The slower leaps used a wider hip joint excursion to negate the downward movement of the pole, using more impulse to power the leap, but with no increase in work done on the centre of mass. Greater hip excursion also minimised the effective leap distance during orthograde leaps. The more rapid leaps conversely applied peak force earlier in stance where the pole was effectively stiffer, minimising deflection and potential energy loss. Neither leap type appeared to usefully recover energy from the pole to increase leap performance, but the gibbons demonstrated an ability to best adapt their leap biomechanics to counter the negative effects of the compliant pole.
Journal of Anatomy | 2010
Anthony J. Channon; Robin H. Crompton; Michael Günther; Evie Vereecke
Muscles facilitate skeletal movement via the production of a torque or moment about a joint. The magnitude of the moment produced depends on both the force of muscular contraction and the size of the moment arm used to rotate the joint. Hence, larger muscle moment arms generate larger joint torques and forces at the point of application. The moment arms of a number of gibbon hind limb muscles were measured on four cadaveric specimens (one Hylobates lar, one H. moloch and two H. syndactylus). The tendon travel technique was used, utilizing an electro‐goniometer and a linear voltage displacement transducer. The data were analysed using a technique based on a differentiated cubic spline and normalized to remove the effect of body size. The data demonstrated a functional differentiation between voluminous muscles with short fascicles having small muscle moment arms and muscles with longer fascicles and comparatively smaller physiological cross‐sectional area having longer muscle moment arms. The functional implications of these particular configurations were simulated using a simple geometric fascicle strain model that predicts that the rectus femoris and gastrocnemius muscles are more likely to act primarily at their distal joints (knee and ankle, respectively) because they have short fascicles. The data also show that the main hip and knee extensors maintain a very small moment arm throughout the range of joint angles seen in the locomotion of gibbons, which (coupled to voluminous, short‐fascicled muscles) might help facilitate rapid joint rotation during powerful movements.
The Journal of Experimental Biology | 2013
Evie Vereecke; Anthony J. Channon
SUMMARY Tendon properties have an important effect on the mechanical behaviour of muscles, with compliant tendons allowing near-isometric muscle contraction and facilitating elastic energy storage and recoil. Stiff tendons, in contrast, facilitate rapid force transfer and precise positional control. In humans, the long Achilles tendon contributes to the mechanical efficiency of running via elastic energy storage and recovery, and its presence has been linked to the evolution of habitual bipedalism. Gibbons also possess relatively long hind limb tendons; however, their role is as yet unknown. Based on their large dimensions, and inferring from the situation in humans, we hypothesize that the tendons in the gibbon hind limb will facilitate elastic energy storage and recoil during hind-limb-powered locomotion. To investigate this, we determined the material properties of the gibbon Achilles and patellar tendon in vitro and linked this with available kinematic and kinetic data to evaluate their role in leaping and bipedalism. Tensile tests were conducted on tendon samples using a material testing machine and the load–displacement data were used to calculate stiffness, Youngs modulus and hysteresis. In addition, the average stress-in-life and energy absorption capacity of both tendons were estimated. We found a functional difference between the gibbon Achilles and patellar tendon, with the Achilles tendon being more suitable for elastic energy storage and release. The patellar tendon, in contrast, has a relatively high hysteresis, making it less suitable to act as elastic spring. This suggests that the gibbon Achilles tendon might fulfil a similar function as in humans, contributing to reducing the locomotor cost of bipedalism by acting as elastic spring, while the high stiffness of the patellar tendon might favour fast force transfer upon recoil and, possibly, enhance leaping performance.
The Journal of Experimental Biology | 2016
Monica A. Daley; Anthony J. Channon; Grant S. Nolan; Jade Hall
ABSTRACT The ostrich (Struthio camelus) is widely appreciated as a fast and agile bipedal athlete, and is a useful comparative bipedal model for human locomotion. Here, we used GPS-IMU sensors to measure naturally selected gait dynamics of ostriches roaming freely over a wide range of speeds in an open field and developed a quantitative method for distinguishing walking and running using accelerometry. We compared freely selected gait–speed distributions with previous laboratory measures of gait dynamics and energetics. We also measured the walk–run and run–walk transition speeds and compared them with those reported for humans. We found that ostriches prefer to walk remarkably slowly, with a narrow walking speed distribution consistent with minimizing cost of transport (CoT) according to a rigid-legged walking model. The dimensionless speeds of the walk–run and run–walk transitions are slower than those observed in humans. Unlike humans, ostriches transition to a run well below the mechanical limit necessitating an aerial phase, as predicted by a compass-gait walking model. When running, ostriches use a broad speed distribution, consistent with previous observations that ostriches are relatively economical runners and have a flat curve for CoT against speed. In contrast, horses exhibit U-shaped curves for CoT against speed, with a narrow speed range within each gait for minimizing CoT. Overall, the gait dynamics of ostriches moving freely over natural terrain are consistent with previous lab-based measures of locomotion. Nonetheless, ostriches, like humans, exhibit a gait-transition hysteresis that is not explained by steady-state locomotor dynamics and energetics. Further study is required to understand the dynamics of gait transitions. Highlighted Article: Ostriches moving freely overground prefer to walk very slowly and run over a broad range of speeds, with gait transitions at slower relative speeds than humans.
The Journal of Experimental Biology | 2009
Sarah B. Williams; James R. Usherwood; Karin J. M. Jespers; Anthony J. Channon; Alan Wilson
Biology Letters | 2012
Anthony J. Channon; James Usherwood; Robin H. Crompton; Michael Günther; Evie Vereecke
Studies in health technology and informatics | 2012
Mma Janssen; Tomaž Vrtovec; F Permus; Fc Oner; Evie Vereecke; Anthony J. Channon; Max A. Viergever; Koen L. Vincken; René M. Castelein
American Journal of Physical Anthropology | 2011
Michael M Guenther; Evie Vereecke; Robin H. Crompton; Kristiaan D'Août; Holger Preuschoft; Anthony J. Channon