Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ghislain M. C. Bonamy is active.

Publication


Featured researches published by Ghislain M. C. Bonamy.


Cell | 2008

Global analysis of host-pathogen interactions that regulate early stage HIV-1 replication

Ronny König; Yingyao Zhou; Daniel Elleder; Tracy L. Diamond; Ghislain M. C. Bonamy; Jeffrey T. Irelan; Chih-yuan Chiang; Buu P. Tu; Paul D. De Jesus; Caroline E. Lilley; Shannon Seidel; Amanda M. Opaluch; Jeremy S. Caldwell; Matthew D. Weitzman; Kelli Kuhen; Sourav Bandyopadhyay; Trey Ideker; Anthony P. Orth; Loren Miraglia; Frederic D. Bushman; John A. T. Young; Sumit K. Chanda

Human Immunodeficiency Viruses (HIV-1 and HIV-2) rely upon host-encoded proteins to facilitate their replication. Here, we combined genome-wide siRNA analyses with interrogation of human interactome databases to assemble a host-pathogen biochemical network containing 213 confirmed host cellular factors and 11 HIV-1-encoded proteins. Protein complexes that regulate ubiquitin conjugation, proteolysis, DNA-damage response, and RNA splicing were identified as important modulators of early-stage HIV-1 infection. Additionally, over 40 new factors were shown to specifically influence the initiation and/or kinetics of HIV-1 DNA synthesis, including cytoskeletal regulatory proteins, modulators of posttranslational modification, and nucleic acid-binding proteins. Finally, 15 proteins with diverse functional roles, including nuclear transport, prostaglandin synthesis, ubiquitination, and transcription, were found to influence nuclear import or viral DNA integration. Taken together, the multiscale approach described here has uncovered multiprotein virus-host interactions that likely act in concert to facilitate the early steps of HIV-1 infection.


Nature | 2010

Human Host Factors Required for Influenza Virus Replication

Renate König; Silke Stertz; Yingyao Zhou; Atsushi Inoue; H.-Heinrich Hoffmann; Suchita Bhattacharyya; Judith G. Alamares; Donna M. Tscherne; Mila Brum Ortigoza; Yuhong Liang; Qinshan Gao; Shane E. Andrews; Sourav Bandyopadhyay; Paul D. De Jesus; Buu P. Tu; Lars Pache; Crystal Shih; Anthony P. Orth; Ghislain M. C. Bonamy; Loren Miraglia; Trey Ideker; Adolfo García-Sastre; John A. T. Young; Peter Palese; Megan L. Shaw; Sumit K. Chanda

Influenza A virus is an RNA virus that encodes up to 11 proteins and this small coding capacity demands that the virus use the host cellular machinery for many aspects of its life cycle. Knowledge of these host cell requirements not only informs us of the molecular pathways exploited by the virus but also provides further targets that could be pursued for antiviral drug development. Here we use an integrative systems approach, based on genome-wide RNA interference screening, to identify 295 cellular cofactors required for early-stage influenza virus replication. Within this group, those involved in kinase-regulated signalling, ubiquitination and phosphatase activity are the most highly enriched, and 181 factors assemble into a highly significant host–pathogen interaction network. Moreover, 219 of the 295 factors were confirmed to be required for efficient wild-type influenza virus growth, and further analysis of a subset of genes showed 23 factors necessary for viral entry, including members of the vacuolar ATPase (vATPase) and COPI-protein families, fibroblast growth factor receptor (FGFR) proteins, and glycogen synthase kinase 3 (GSK3)-β. Furthermore, 10 proteins were confirmed to be involved in post-entry steps of influenza virus replication. These include nuclear import components, proteases, and the calcium/calmodulin-dependent protein kinase (CaM kinase) IIβ (CAMK2B). Notably, growth of swine-origin H1N1 influenza virus is also dependent on the identified host factors, and we show that small molecule inhibitors of several factors, including vATPase and CAMK2B, antagonize influenza virus replication.


Science | 2011

Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery

Stephan Meister; David Plouffe; Kelli Kuhen; Ghislain M. C. Bonamy; Tao Wu; S. Whitney Barnes; Selina Bopp; Rachel Borboa; A. Taylor Bright; Jianwei Che; Steve Cohen; Neekesh V. Dharia; Kerstin Gagaring; Montip Gettayacamin; Perry Gordon; Todd Groessl; Nobutaka Kato; Marcus C. S. Lee; Case W. McNamara; David A. Fidock; Advait Nagle; Tae-gyu Nam; Wendy Richmond; Jason Roland; Matthias Rottmann; Bin Zhou; Patrick Froissard; Richard Glynne; Dominique Mazier; Jetsumon Sattabongkot

Imidazolopiperazine compounds inhibit liver-stage malaria parasites with one oral dose in mice. Most malaria drug development focuses on parasite stages detected in red blood cells, even though, to achieve eradication, next-generation drugs active against both erythrocytic and exo-erythrocytic forms would be preferable. We applied a multifactorial approach to a set of >4000 commercially available compounds with previously demonstrated blood-stage activity (median inhibitory concentration < 1 micromolar) and identified chemical scaffolds with potent activity against both forms. From this screen, we identified an imidazolopiperazine scaffold series that was highly enriched among compounds active against Plasmodium liver stages. The orally bioavailable lead imidazolopiperazine confers complete causal prophylactic protection (15 milligrams/kilogram) in rodent models of malaria and shows potent in vivo blood-stage therapeutic activity. The open-source chemical tools resulting from our effort provide starting points for future drug discovery programs, as well as opportunities for researchers to investigate the biology of exo-erythrocytic forms.


Chemistry & Biology | 2012

Identification of serum-derived sphingosine-1-phosphate as a small molecule regulator of YAP.

Eric Miller; Jiayi Yang; Michael DeRan; Chunlei Wu; Andrew I. Su; Ghislain M. C. Bonamy; Jun Liu; Eric C. Peters; Xu Wu

Hippo signaling represents a tumor suppressor pathway that regulates organ size and tumorigenesis through phosphorylation and inhibition of the transcription coactivator YAP. Here, we show that serum deprivation dramatically induces YAP Ser127 phosphorylation and cytoplasmic retention, independent of cell-cell contact. Through chemical isolation and activity profiling, we identified serum-derived sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) as small molecule activators of YAP. S1P induces YAP nuclear localization through S1P(2) receptor, Rho GTPase activation, and F-actin polymerization, independent of the core Hippo pathway kinases. Bioinformatics studies also showed that S1P stimulation induces YAP target gene expression in mouse liver and human embryonic stem cells. These results revealed potent small molecule regulators of YAP and suggest that S1P and LPA might modulate cell proliferation and tumorigenesis through YAP activation.


ACS Chemical Biology | 2011

A Chemical Genomic Analysis of Decoquinate, a Plasmodium falciparum Cytochrome b Inhibitor

Tae-gyu Nam; Case W. McNamara; Selina Bopp; Neekesh V. Dharia; Stephan Meister; Ghislain M. C. Bonamy; David Plouffe; Nobutaka Kato; Susan McCormack; Badry Bursulaya; Hangjun Ke; Akhil B. Vaidya; Peter G. Schultz; Elizabeth A. Winzeler

Decoquinate has single-digit nanomolar activity against in vitro blood stage Plasmodium falciparum parasites, the causative agent of human malaria. In vitro evolution of decoquinate-resistant parasites and subsequent comparative genomic analysis to the drug-sensitive parental strain revealed resistance was conferred by two nonsynonymous single nucleotide polymorphisms in the gene encoding cytochrome b. The resultant amino acid mutations, A122T and Y126C, reside within helix C in the ubiquinol-binding pocket of cytochrome b, an essential subunit of the cytochrome bc1 complex. As with other cytochrome bc1 inhibitors, such as atovaquone, decoquinate has low nanomolar activity against in vitro liver stage P. yoelii and provides partial prophylaxis protection when administered to infected mice at 50 mg kg–1. In addition, transgenic parasites expressing yeast dihydroorotate dehydrogenase are >200-fold less sensitive to decoquinate, which provides additional evidence that this drug inhibits the parasite’s mitochondrial electron transport chain. Importantly, decoquinate exhibits limited cross-resistance to a panel of atovaquone-resistant parasites evolved to harbor various mutations in cytochrome b. The basis for this difference was revealed by molecular docking studies, in which both of these inhibitors were shown to have distinctly different modes of binding within the ubiquinol-binding site of cytochrome b.


Angewandte Chemie | 2012

A Small Molecule Promotes Mitochondrial Fusion in Mammalian Cells

Danling Wang; Jianing Wang; Ghislain M. C. Bonamy; Shelly Meeusen; Richard G. Brusch; Carolina Turk; Peng-Yu Yang; Peter G. Schultz

Mitochondria are highly dynamic cellular organelles that continuously undergo fission and fusion. This dynamic nature plays a key role in regulating mitochondrial function, and also gives mitochondria their heterogeneous morphology. Disruption of the balance between mitochondrial fusion and fission, especially a shift towards fission, contributes to a variety of human disorders, including neurodegenerative disease, metabolic disease, and ischemia. In addition, fragmented mitochondria are early signs of activation of apoptosis, and fusion of mitochondria by genetic or chemical manipulation has been shown to have an anti-apoptotic effect. Thus, the identification of small molecules that modulate mitochondrial dynamics can provide useful tools to study mitochondrial function and may ultimately lead to new therapeutics. Here, we report the identification and preliminary biological characterization of the small molecule, M1, which significantly restores the mitochondrial tubular network in response to genetically or chemically induced fragmentation. Mitochondrial fusion is a two-step process in which the outer and inner mitochondrial membranes (OMM and IMM, respectively) fuse separately, but in an ordered fashion. The core components of the mitochondrial fusion machinery are the OMM proteins, mitofusin 1 and 2 (Mfn1 and Mfn2), and the IMM protein, optic atrophy 1 (Opa1). Unlike wild-type mouse embryonic fibroblasts (WT MEFs), which mainly have interconnected tubular mitochondria, Mfn1 Knockout (KO) MEFs exhibit severely and uniformly frag-


Proceedings of the National Academy of Sciences of the United States of America | 2010

Determining the distribution of probes between different subcellular locations through automated unmixing of subcellular patterns

Tao Peng; Ghislain M. C. Bonamy; Estelle Glory-Afshar; Daniel R. Rines; Sumit K. Chanda; Robert F. Murphy

Many proteins or other biological macromolecules are localized to more than one subcellular structure. The fraction of a protein in different cellular compartments is often measured by colocalization with organelle-specific fluorescent markers, requiring availability of fluorescent probes for each compartment and acquisition of images for each in conjunction with the macromolecule of interest. Alternatively, tailored algorithms allow finding particular regions in images and quantifying the amount of fluorescence they contain. Unfortunately, this approach requires extensive hand-tuning of algorithms and is often cell type-dependent. Here we describe a machine-learning approach for estimating the amount of fluorescent signal in different subcellular compartments without hand tuning, requiring only the acquisition of separate training images of markers for each compartment. In testing on images of cells stained with mixtures of probes for different organelles, we achieved a 93% correlation between estimated and expected amounts of probes in each compartment. We also demonstrated that the method can be used to quantify drug-dependent protein translocations. The method enables automated and unbiased determination of the distributions of protein across cellular compartments, and will significantly improve imaging-based high-throughput assays and facilitate proteome-scale localization efforts.


PLOS ONE | 2013

FGFR2 Promotes Breast Tumorigenicity through Maintenance of Breast Tumor-Initiating Cells

Sungeun Kim; Anna Dubrovska; Richard J. Salamone; John R. Walker; Kathryn B. Grandinetti; Ghislain M. C. Bonamy; Anthony P. Orth; Jimmy Elliott; Diana Graus Porta; Carlos Garcia-Echeverria; Venkateshwar A. Reddy

Emerging evidence suggests that some cancers contain a population of stem-like TICs (tumor-initiating cells) and eliminating TICs may offer a new strategy to develop successful anti-cancer therapies. As molecular mechanisms underlying the maintenance of the TIC pool are poorly understood, the development of TIC-specific therapeutics remains a major challenge. We first identified and characterized TICs and non-TICs isolated from a mouse breast cancer model. TICs displayed increased tumorigenic potential, self-renewal, heterogeneous differentiation, and bipotency. Gene expression analysis and immunostaining of TICs and non-TICs revealed that FGFR2 was preferentially expressed in TICs. Loss of FGFR2 impaired self-renewal of TICs, thus resulting in marked decreases in the TIC population and tumorigenic potential. Restoration of FGFR2 rescued the defects in TIC pool maintenance, bipotency, and breast tumor growth driven by FGFR2 knockdown. In addition, pharmacological inhibition of FGFR2 kinase activity led to a decrease in the TIC population which resulted in suppression of breast tumor growth. Moreover, human breast TICs isolated from patient tumor samples were found enriched in a FGFR2+ population that was sufficient to initiate tumor growth. Our data suggest that FGFR2 is essential in sustaining the breast TIC pool through promotion of self-renewal and maintenance of bipotent TICs, and raise the possibility of FGFR2 inhibition as a strategy for anti-cancer therapy by eradicating breast TICs.


Nature | 2017

The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERα

Stephan Duss; Sungeun Kim; Joana Pinto Couto; Heike Brinkhaus; Shany Koren; Duvini De Silva; Kirsten D. Mertz; Daniela Kaup; Zsuzsanna Varga; Hans Voshol; Alexandra Vissieres; Cédric Leroy; Tim Roloff; Michael B. Stadler; Christina H. Scheel; Loren Miraglia; Anthony P. Orth; Ghislain M. C. Bonamy; Venkateshwar A. Reddy; Mohamed Bentires-Alj

Cell fate perturbations underlie many human diseases, including breast cancer. Unfortunately, the mechanisms by which breast cell fate are regulated are largely unknown. The mammary gland epithelium consists of differentiated luminal epithelial and basal myoepithelial cells, as well as undifferentiated stem cells and more restricted progenitors. Breast cancer originates from this epithelium, but the molecular mechanisms that underlie breast epithelial hierarchy remain ill-defined. Here, we use a high-content confocal image-based short hairpin RNA screen to identify tumour suppressors that regulate breast cell fate in primary human breast epithelial cells. We show that ablation of the large tumour suppressor kinases (LATS) 1 and 2 (refs 5, 6), which are part of the Hippo pathway, promotes the luminal phenotype and increases the number of bipotent and luminal progenitors, the proposed cells-of-origin of most human breast cancers. Mechanistically, we have identified a direct interaction between Hippo and oestrogen receptor-α (ERα) signalling. In the presence of LATS, ERα was targeted for ubiquitination and Ddb1–cullin4-associated-factor 1 (DCAF1)-dependent proteasomal degradation. Absence of LATS stabilized ERα and the Hippo effectors YAP and TAZ (hereafter YAP/TAZ), which together control breast cell fate through intrinsic and paracrine mechanisms. Our findings reveal a non-canonical (that is, YAP/TAZ-independent) effect of LATS in the regulation of human breast cell fate.


Nature microbiology | 2016

UDP-galactose and acetyl-CoA transporters as Plasmodium multidrug resistance genes

Michelle Yi-Xiu Lim; Gregory G. LaMonte; Marcus C. S. Lee; Christin Reimer; Bee Huat Tan; Victoria V. Corey; Bianca F Bf Tjahjadi; Adeline Chua; Marie Nachon; René Wintjens; Peter Gedeck; Benoit Malleret; Laurent Rénia; Ghislain M. C. Bonamy; Paul Chi-Lui Pc Ho; Bryan K. S. Yeung; Eric D. Chow; Liting L. Lim; David A. Fidock; Thierry T. Diagana; Elizabeth A. Winzeler; Pablo Bifani

A molecular understanding of drug resistance mechanisms enables surveillance of the effectiveness of new antimicrobial therapies during development and deployment in the field. We used conventional drug resistance selection as well as a regime of limiting dilution at early stages of drug treatment to probe two antimalarial imidazolopiperazines, KAF156 and GNF179. The latter approach permits the isolation of low-fitness mutants that might otherwise be out-competed during selection. Whole-genome sequencing of 24 independently derived resistant Plasmodium falciparum clones revealed four parasites with mutations in the known cyclic amine resistance locus (pfcarl) and a further 20 with mutations in two previously unreported P. falciparum drug resistance genes, an acetyl-CoA transporter (pfact) and a UDP-galactose transporter (pfugt). Mutations were validated both in vitro by CRISPR editing in P. falciparum and in vivo by evolution of resistant Plasmodium berghei mutants. Both PfACT and PfUGT were localized to the endoplasmic reticulum by fluorescence microscopy. As mutations in pfact and pfugt conveyed resistance against additional unrelated chemical scaffolds, these genes are probably involved in broad mechanisms of antimalarial drug resistance.

Collaboration


Dive into the Ghislain M. C. Bonamy's collaboration.

Top Co-Authors

Avatar

Anthony P. Orth

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Loren Miraglia

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Venkateshwar A. Reddy

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Yingyao Zhou

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Buu P. Tu

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Case W. McNamara

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

David A. Fidock

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

David Plouffe

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. T. Young

Salk Institute for Biological Studies

View shared research outputs
Researchain Logo
Decentralizing Knowledge