Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony Rosati is active.

Publication


Featured researches published by Anthony Rosati.


Journal of Climate | 2006

GFDL's CM2 global coupled climate models. Part I: Formulation and simulation characteristics

Thomas L. Delworth; Anthony J. Broccoli; Anthony Rosati; Ronald J. Stouffer; V. Balaji; John A. Beesley; William F. Cooke; Keith W. Dixon; John P. Dunne; Krista A. Dunne; Jeffrey W. Durachta; Kirsten L. Findell; Paul Ginoux; Anand Gnanadesikan; C. T. Gordon; Stephen M. Griffies; Rich Gudgel; Matthew J. Harrison; Isaac M. Held; Richard S. Hemler; Larry W. Horowitz; Stephen A. Klein; Thomas R. Knutson; Paul J. Kushner; Amy R. Langenhorst; Hyun-Chul Lee; Shian Jiann Lin; Jian Lu; Sergey Malyshev; P. C. D. Milly

Abstract The formulation and simulation characteristics of two new global coupled climate models developed at NOAAs Geophysical Fluid Dynamics Laboratory (GFDL) are described. The models were designed to simulate atmospheric and oceanic climate and variability from the diurnal time scale through multicentury climate change, given our computational constraints. In particular, an important goal was to use the same model for both experimental seasonal to interannual forecasting and the study of multicentury global climate change, and this goal has been achieved. Two versions of the coupled model are described, called CM2.0 and CM2.1. The versions differ primarily in the dynamical core used in the atmospheric component, along with the cloud tuning and some details of the land and ocean components. For both coupled models, the resolution of the land and atmospheric components is 2° latitude × 2.5° longitude; the atmospheric model has 24 vertical levels. The ocean resolution is 1° in latitude and longitude, wi...


Journal of Geophysical Research | 1998

A review of the predictability and prediction of ENSO

Mojib Latif; D. Anderson; Tim P. Barnett; Mark A. Cane; Richard Kleeman; Ants Leetmaa; James J. O'Brien; Anthony Rosati; Edwin K. Schneider

A hierarchy of El Nino-Southern Oscillation (ENSO) prediction schemes has been developed during the Tropical Ocean-Global Atmosphere (TOGA) program which includes statistical schemes and physical models. The statistical models are, in general, based on linear statistical techniques and can be classified into models which use atmospheric (sea level pressure or surface wind) or oceanic (sea surface temperature or a measure of upper ocean heat content) quantities or a combination of oceanic and atmospheric quantities as predictors. The physical models consist of coupled ocean-atmosphere models of varying degrees of complexity, ranging from simplified coupled models of the “shallow water” type to coupled general circulation models. All models, statistical and physical, perform considerably better than the persistence forecast in predicting typical indices of ENSO on lead times of 6 to 12 months. The TOGA program can be regarded as a success from this perspective. However, despite the demonstrated predictability, little is known about ENSO predictability limits and the predictability of phenomena outside the tropical Pacific. Furthermore, the predictability of anomalous features known to be associated with ENSO (e.g., Indian monsoon and Sahel rainfall, southern African drought, and off-equatorial sea surface temperature) needs to be addressed in more detail. As well, the relative importance of different physical mechanisms (in the ocean or atmosphere) has yet to be established. A seasonal dependence in predictability is seen in many models, but the processes responsible for it are not fully understood, and its meaning is still a matter of scientific discussion. Likewise, a marked decadal variation in skill is observed, and the reasons for this are still under investigation. Finally, the different prediction models yield similar skills, although they are initialized quite differently. The reasons for these differences are also unclear.


Journal of Physical Oceanography | 1989

A Global Oceanic Data Assimilation System

John Derber; Anthony Rosati

Abstract A global oceanic four-dimensional data assimilation system has been developed for use in initializing coupled ocean–atmosphere general circulation models and many other applications. The data assimilation system uses a high resolution global ocean model to extrapolate the information forward in time. The data inserted into the model currently consists only of conventional sea surface temperature observations and vertical temperature profiles. The data are inserted continuously into the model by updating the models temperature solution every timestep. This update is created using a statistical interpolation routine applied to all data in a 30-day window centered on the present timestep. Large scale features in the sea surface temperature analyses are consistent with those from independent analyses. Subsurface fields created from the assimilation are much more realistic than those produced without the insertion of data. Furthermore, information contained in the assimilation field is shown to be re...


Bulletin of the American Meteorological Society | 2014

The North American Multimodel Ensemble: Phase-1 Seasonal-to-Interannual Prediction; Phase-2 toward Developing Intraseasonal Prediction

Ben P. Kirtman; Dughong Min; Johnna M. Infanti; James L. Kinter; Daniel A. Paolino; Qin Zhang; Huug van den Dool; Suranjana Saha; Malaquias Mendez; Emily Becker; Peitao Peng; Patrick Tripp; Jin Huang; David G. DeWitt; Michael K. Tippett; Anthony G. Barnston; Shuhua Li; Anthony Rosati; Siegfried D. Schubert; Michele M. Rienecker; Max J. Suarez; Zhao E. Li; Jelena Marshak; Young Kwon Lim; Joseph Tribbia; Kathleen Pegion; William J. Merryfield; Bertrand Denis; Eric F. Wood

The recent U.S. National Academies report, Assessment of Intraseasonal to Interannual Climate Prediction and Predictability, was unequivocal in recommending the need for the development of a North American Multimodel Ensemble (NMME) operational predictive capability. Indeed, this effort is required to meet the specific tailored regional prediction and decision support needs of a large community of climate information users. The multimodel ensemble approach has proven extremely effective at quantifying prediction uncertainty due to uncertainty in model formulation and has proven to produce better prediction quality (on average) than any single model ensemble. This multimodel approach is the basis for several international collaborative prediction research efforts and an operational European system, and there are numerous examples of how this multimodel ensemble approach yields superior forecasts compared to any single model. Based on two NOAA Climate Test bed (CTB) NMME workshops (18 February and 8 April 2...


Journal of Climate | 2012

Simulated Climate and Climate Change in the GFDL CM2.5 High-Resolution Coupled Climate Model

Thomas L. Delworth; Anthony Rosati; Whit G. Anderson; Alistair J. Adcroft; V. Balaji; Rusty Benson; Keith W. Dixon; Stephen M. Griffies; Hyun-Chul Lee; R. C. Pacanowski; Gabriel A. Vecchi; Andrew T. Wittenberg; Fanrong Zeng; Rong Zhang

AbstractThe authors present results for simulated climate and climate change from a newly developed high-resolution global climate model [Geophysical Fluid Dynamics Laboratory Climate Model version 2.5 (GFDL CM2.5)]. The GFDL CM2.5 has an atmospheric resolution of approximately 50 km in the horizontal, with 32 vertical levels. The horizontal resolution in the ocean ranges from 28 km in the tropics to 8 km at high latitudes, with 50 vertical levels. This resolution allows the explicit simulation of some mesoscale eddies in the ocean, particularly at lower latitudes.Analyses are presented based on the output of a 280-yr control simulation; also presented are results based on a 140-yr simulation in which atmospheric CO2 increases at 1% yr−1 until doubling after 70 yr.Results are compared to GFDL CM2.1, which has somewhat similar physics but a coarser resolution. The simulated climate in CM2.5 shows marked improvement over many regions, especially the tropics, including a reduction in the double ITCZ and an i...


Journal of Climate | 2006

GFDL's CM2 Global Coupled Climate Models. Part III: Tropical Pacific Climate and ENSO

Andrew T. Wittenberg; Anthony Rosati; Ngar-Cheung Lau; Jeffrey J. Ploshay

Abstract Multicentury integrations from two global coupled ocean–atmosphere–land–ice models [Climate Model versions 2.0 (CM2.0) and 2.1 (CM2.1), developed at the Geophysical Fluid Dynamics Laboratory] are described in terms of their tropical Pacific climate and El Nino–Southern Oscillation (ENSO). The integrations are run without flux adjustments and provide generally realistic simulations of tropical Pacific climate. The observed annual-mean trade winds and precipitation, sea surface temperature, surface heat fluxes, surface currents, Equatorial Undercurrent, and subsurface thermal structure are well captured by the models. Some biases are evident, including a cold SST bias along the equator, a warm bias along the coast of South America, and a westward extension of the trade winds relative to observations. Along the equator, the models exhibit a robust, westward-propagating annual cycle of SST and zonal winds. During boreal spring, excessive rainfall south of the equator is linked to an unrealistic rever...


Journal of Climate | 2006

GFDL's CM2 Global Coupled Climate Models. Part II: The Baseline Ocean Simulation

Anand Gnanadesikan; Keith W. Dixon; Stephen M. Griffies; V. Balaji; Marcelo Barreiro; J. Anthony Beesley; William F. Cooke; Thomas L. Delworth; Rüdiger Gerdes; Matthew J. Harrison; Isaac M. Held; William J. Hurlin; Hyun-Chul Lee; Zhi Liang; Giang Nong; R. C. Pacanowski; Anthony Rosati; Joellen L. Russell; Bonita L. Samuels; Qian Song; Michael J. Spelman; Ronald J. Stouffer; Colm Sweeney; Gabriel A. Vecchi; Michael Winton; Andrew T. Wittenberg; Fanrong Zeng; Rong Zhang; John P. Dunne

The current generation of coupled climate models run at the Geophysical Fluid Dynamics Laboratory (GFDL) as part of the Climate Change Science Program contains ocean components that differ in almost every respect from those contained in previous generations of GFDL climate models. This paper summarizes the new physical features of the models and examines the simulations that they produce. Of the two new coupled climate model versions 2.1 (CM2.1) and 2.0 (CM2.0), the CM2.1 model represents a major improvement over CM2.0 in most of the major oceanic features examined, with strikingly lower drifts in hydrographic fields such as temperature and salinity, more realistic ventilation of the deep ocean, and currents that are closer to their observed values. Regional analysis of the differences between the models highlights the importance of wind stress in determining the circulation, particularly in the Southern Ocean. At present, major errors in both models are associated with Northern Hemisphere Mode Waters and outflows from overflows, particularly the Mediterranean Sea and Red Sea.


Monthly Weather Review | 2007

System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies

Shaoqing Zhang; Matthew J. Harrison; Anthony Rosati; Andrew T. Wittenberg

Abstract A fully coupled data assimilation (CDA) system, consisting of an ensemble filter applied to the Geophysical Fluid Dynamics Laboratory’s global fully coupled climate model (CM2), has been developed to facilitate the detection and prediction of seasonal-to-multidecadal climate variability and climate trends. The assimilation provides a self-consistent, temporally continuous estimate of the coupled model state and its uncertainty, in the form of discrete ensemble members, which can be used directly to initialize probabilistic climate forecasts. Here, the CDA is evaluated using a series of perfect model experiments, in which a particular twentieth-century simulation—with temporally varying greenhouse gas and natural aerosol radiative forcings—serves as a “truth” from which observations are drawn, according to the actual ocean observing network for the twentieth century. These observations are then assimilated into a coupled model ensemble that is subjected only to preindustrial forcings. By examining...


Journal of the Atmospheric Sciences | 2013

Have Aerosols Caused the Observed Atlantic Multidecadal Variability

Rong Zhang; Thomas L. Delworth; Rowan Sutton; Daniel L. R. Hodson; Keith W. Dixon; Isaac M. Held; Yochanan Kushnir; John Marshall; Yi Ming; Rym Msadek; Jon Robson; Anthony Rosati; Mingfang Ting; Gabriel A. Vecchi

Identifying the prime drivers of the twentieth-century multidecadal variability in the Atlantic Ocean is crucial for predicting how the Atlantic will evolve in the coming decades and the resulting broad impacts on weather and precipitation patterns around the globe. Recently, Booth et al. showed that the Hadley Centre Global Environmental Model, version 2, Earth system configuration (HadGEM2-ES) closely reproduces the observed multidecadal variations of area-averaged North Atlantic sea surface temperature in the twentieth century. The multidecadal variations simulated in HadGEM2-ES are primarily driven by aerosol indirect effects that modifynet surface shortwaveradiation. On the basis of theseresults, Booth et al. concluded that aerosols are a prime driver of twentieth-century North Atlantic climate variability. However, here it is shown that there are major discrepancies between the HadGEM2-ES simulations and observations in the North Atlantic upper-ocean heat content, in the spatial pattern of multidecadal SST changes within and outside the North Atlantic, and in the subpolar North Atlantic sea surface salinity. These discrepancies may bestronglyinfluenced by, and indeedinlargepart causedby, aerosoleffects. It is alsoshown that theaerosol effects simulated in HadGEM2-ES cannot account for the observed anticorrelation between detrended multidecadal surface and subsurface temperature variations in the tropical North Atlantic. These discrepancies cast considerable doubt on the claim that aerosol forcing drives the bulk of this multidecadal variability.


Monthly Weather Review | 1997

The impact of ocean initial conditions on ENSO forecasting with a coupled model

Anthony Rosati; K. Miyakoda; R. Gudgel

Abstract A coupled atmosphere–ocean GCM (general circulation model) has been developed for climate predictions on seasonal to interannual timescales. The atmosphere model is a global spectral GCM T30L18 and the ocean model is global on a 1° grid. Initial conditions for the atmosphere were obtained from National Meteorological Center (now known as the National Centers for Environmental Prediction) analyses, while those for the ocean came from three ocean data assimilation (DA) systems. One system is a four-dimensional DA scheme that uses conventional SST observations and vertical temperature profiles inserted into the ocean model and is forced from winds from an operational analysis. The other two initialization schemes are based on the coupled model, both nudging the surface temperature toward observed SSTs and one nudging surface winds from an operational analysis. All three systems were run from 1979 to 1988, saving the state of the ocean every month, thus initial conditions may be obtained for any mont...

Collaboration


Dive into the Anthony Rosati's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas L. Delworth

Geophysical Fluid Dynamics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew T. Wittenberg

Geophysical Fluid Dynamics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith W. Dixon

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Whit G. Anderson

Geophysical Fluid Dynamics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaosong Yang

Geophysical Fluid Dynamics Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge