Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Whit G. Anderson is active.

Publication


Featured researches published by Whit G. Anderson.


Journal of Climate | 2012

Simulated Climate and Climate Change in the GFDL CM2.5 High-Resolution Coupled Climate Model

Thomas L. Delworth; Anthony Rosati; Whit G. Anderson; Alistair J. Adcroft; V. Balaji; Rusty Benson; Keith W. Dixon; Stephen M. Griffies; Hyun-Chul Lee; R. C. Pacanowski; Gabriel A. Vecchi; Andrew T. Wittenberg; Fanrong Zeng; Rong Zhang

AbstractThe authors present results for simulated climate and climate change from a newly developed high-resolution global climate model [Geophysical Fluid Dynamics Laboratory Climate Model version 2.5 (GFDL CM2.5)]. The GFDL CM2.5 has an atmospheric resolution of approximately 50 km in the horizontal, with 32 vertical levels. The horizontal resolution in the ocean ranges from 28 km in the tropics to 8 km at high latitudes, with 50 vertical levels. This resolution allows the explicit simulation of some mesoscale eddies in the ocean, particularly at lower latitudes.Analyses are presented based on the output of a 280-yr control simulation; also presented are results based on a 140-yr simulation in which atmospheric CO2 increases at 1% yr−1 until doubling after 70 yr.Results are compared to GFDL CM2.1, which has somewhat similar physics but a coarser resolution. The simulated climate in CM2.5 shows marked improvement over many regions, especially the tropics, including a reduction in the double ITCZ and an i...


Journal of Climate | 2014

On the Seasonal Forecasting of Regional Tropical Cyclone Activity

Gabriel A. Vecchi; Thomas L. Delworth; Richard Gudgel; Sarah B. Kapnick; Anthony Rosati; Andrew T. Wittenberg; Fanrong Zeng; Whit G. Anderson; V. Balaji; Keith W. Dixon; Liwei Jia; H.-S. Kim; Lakshmi Krishnamurthy; Rym Msadek; William F. Stern; Seth Underwood; Gabriele Villarini; Xiasong Yang; Shaoqing Zhang

AbstractTropical cyclones (TCs) are a hazard to life and property and a prominent element of the global climate system; therefore, understanding and predicting TC location, intensity, and frequency is of both societal and scientific significance. Methodologies exist to predict basinwide, seasonally aggregated TC activity months, seasons, and even years in advance. It is shown that a newly developed high-resolution global climate model can produce skillful forecasts of seasonal TC activity on spatial scales finer than basinwide, from months and seasons in advance of the TC season. The climate model used here is targeted at predicting regional climate and the statistics of weather extremes on seasonal to decadal time scales, and comprises high-resolution (50 km × 50 km) atmosphere and land components as well as more moderate-resolution (~100 km) sea ice and ocean components. The simulation of TC climatology and interannual variations in this climate model is substantially improved by correcting systematic o...


Journal of Climate | 2015

Improved Seasonal Prediction of Temperature and Precipitation over Land in a High-Resolution GFDL Climate Model

Liwei Jia; Xiaosong Yang; Gabriel A. Vecchi; Richard Gudgel; Thomas L. Delworth; Anthony Rosati; William F. Stern; Andrew T. Wittenberg; Lakshmi Krishnamurthy; Shaoqing Zhang; Rym Msadek; Sarah B. Kapnick; Seth Underwood; Fanrong Zeng; Whit G. Anderson; Venkatramani Balaji; Keith W. Dixon

AbstractThis study demonstrates skillful seasonal prediction of 2-m air temperature and precipitation over land in a new high-resolution climate model developed by the Geophysical Fluid Dynamics Laboratory and explores the possible sources of the skill. The authors employ a statistical optimization approach to identify the most predictable components of seasonal mean temperature and precipitation over land and demonstrate the predictive skill of these components. First, the improved skill of the high-resolution model over the previous lower-resolution model in seasonal prediction of the Nino-3.4 index and other aspects of interest is shown. Then, the skill of temperature and precipitation in the high-resolution model for boreal winter and summer is measured, and the sources of the skill are diagnosed. Last, predictions are reconstructed using a few of the most predictable components to yield more skillful predictions than the raw model predictions. Over three decades of hindcasts, the two most predictable...


Journal of Climate | 2013

A Predictable AMO-Like Pattern in the GFDL Fully Coupled Ensemble Initialization and Decadal Forecasting System

Xiaosong Yang; Anthony Rosati; Shaoqing Zhang; Thomas L. Delworth; Rich Gudgel; Rong Zhang; Gabriel A. Vecchi; Whit G. Anderson; You-Soon Chang; Timothy DelSole; Keith W. Dixon; Rym Msadek; William F. Stern; Andrew T. Wittenberg; Fanrong Zeng

The decadal predictability of sea surface temperature (SST) and 2-m air temperature (T2m) in the Geophysical Fluid Dynamics Laboratory (GFDL) decadal hindcasts, which are part of the Fifth Coupled Model Intercomparison Project experiments, has been investigated using an average predictability time (APT) analysis. Comparison of retrospective forecasts initialized using the GFDL Ensemble Coupled Data Assimilation system with uninitialized historical forcing simulations using the same model allows identification of the internal multidecadal pattern (IMP) for SST and T2m. The IMP of SST is characterized by an interhemisphere dipole, with warm anomalies centered in the North Atlantic subpolar gyre region and North Pacific subpolar gyre region, and cold anomalies centered in the Antarctic Circumpolar Current region. The IMP of T2m is characterized by a general bipolar seesaw, with warm anomalies centered in Greenland and cold anomalies centered in Antarctica. The retrospective prediction skill of the initialized system, verified against independent observational datasets, indicates that the IMP of SST may be predictable up to 4 (10) yr lead time at 95% (90%) significance level, and the IMP of T2m may be predictable up to 2 (10) yr at the 95% (90%) significance level. The initialization of multidecadal variations of northward oceanic heat transport in the North Atlantic significantly improves the predictive skill of the IMP. The dominant roles of oceanic internaldynamicsin decadalpredictionare furtherelucidated byfixed-forcing experimentsin which radiative forcing is returned abruptly to 1961 values. These results point toward the possibility of meaningful decadal climateoutlooksusingdynamicalcoupledmodelsiftheyareappropriatelyinitializedfromasustainedclimate observing system.


Journal of Climate | 2015

Simulation and Prediction of Category 4 and 5 Hurricanes in the High-Resolution GFDL HiFLOR Coupled Climate Model*

Hiroyuki Murakami; Gabriel A. Vecchi; Seth Underwood; Thomas L. Delworth; Andrew T. Wittenberg; Whit G. Anderson; Jan-Huey Chen; Richard Gudgel; Lucas M. Harris; Shian-Jiann Lin; Fanrong Zeng

AbstractA new high-resolution Geophysical Fluid Dynamics Laboratory (GFDL) coupled model [the High-Resolution Forecast-Oriented Low Ocean Resolution (FLOR) model (HiFLOR)] has been developed and used to investigate potential skill in simulation and prediction of tropical cyclone (TC) activity. HiFLOR comprises high-resolution (~25-km mesh) atmosphere and land components and a more moderate-resolution (~100-km mesh) sea ice and ocean component. HiFLOR was developed from FLOR by decreasing the horizontal grid spacing of the atmospheric component from 50 to 25 km, while leaving most of the subgrid-scale physical parameterizations unchanged. Compared with FLOR, HiFLOR yields a more realistic simulation of the structure, global distribution, and seasonal and interannual variations of TCs, as well as a comparable simulation of storm-induced cold wakes and TC-genesis modulation induced by the Madden–Julian oscillation (MJO). Moreover, HiFLOR is able to simulate and predict extremely intense TCs (Saffir–Simpson h...


Journal of Climate | 2014

Tropical Cyclone Simulation and Response to CO2 Doubling in the GFDL CM2.5 High-Resolution Coupled Climate Model

Hyeong-Seog Kim; Gabriel A. Vecchi; Thomas R. Knutson; Whit G. Anderson; Thomas L. Delworth; Anthony Rosati; Fanrong Zeng; Ming Zhao

AbstractGlobal tropical cyclone (TC) activity is simulated by the Geophysical Fluid Dynamics Laboratory (GFDL) Climate Model, version 2.5 (CM2.5), which is a fully coupled global climate model with a horizontal resolution of about 50 km for the atmosphere and 25 km for the ocean. The present climate simulation shows a fairly realistic global TC frequency, seasonal cycle, and geographical distribution. The model has some notable biases in regional TC activity, including simulating too few TCs in the North Atlantic. The regional biases in TC activity are associated with simulation biases in the large-scale environment such as sea surface temperature, vertical wind shear, and vertical velocity. Despite these biases, the model simulates the large-scale variations of TC activity induced by El Nino–Southern Oscillation fairly realistically. The response of TC activity in the model to global warming is investigated by comparing the present climate with a CO2 doubling experiment. Globally, TC frequency decreases ...


Journal of Physical Oceanography | 2009

Ocean Water Clarity and the Ocean General Circulation in a Coupled Climate Model

Anand Gnanadesikan; Whit G. Anderson

Abstract Ocean water clarity affects the distribution of shortwave heating in the water column. In a one-dimensional time-mean sense, increased clarity would be expected to cool the surface and heat subsurface depths as shortwave radiation penetrates deeper into the water column. However, wind-driven upwelling, boundary currents, and the seasonal cycle of mixing can bring water heated at depth back to the surface. This warms the equator and cools the subtropics throughout the year while reducing the amplitude of the seasonal cycle of temperature in polar regions. This paper examines how these changes propagate through the climate system in a coupled model with an isopycnal ocean component focusing on the different impacts associated with removing shading from different regions. Increasing shortwave penetration along the equator causes warming to the south of the equator. Increasing it in the relatively clear gyres off the equator causes the Hadley cells to strengthen and the subtropical gyres to shift equ...


Journal of Physical Oceanography | 2015

Role of Mesoscale Eddies in Cross-Frontal Transport of Heat and Biogeochemical Tracers in the Southern Ocean

Carolina O. Dufour; Stephen M. Griffies; Gregory F. de Souza; Ivy Frenger; Adele K. Morrison; Jaime B. Palter; Jorge L. Sarmiento; Eric D. Galbraith; John P. Dunne; Whit G. Anderson; Richard D. Slater

AbstractThis study examines the role of processes transporting tracers across the Polar Front (PF) in the depth interval between the surface and major topographic sills, which this study refers to as the “PF core.” A preindustrial control simulation of an eddying climate model coupled to a biogeochemical model [GFDL Climate Model, version 2.6 (CM2.6)– simplified version of the Biogeochemistry with Light Iron Nutrients and Gas (miniBLING) 0.1° ocean model] is used to investigate the transport of heat, carbon, oxygen, and phosphate across the PF core, with a particular focus on the role of mesoscale eddies. The authors find that the total transport across the PF core results from a ubiquitous Ekman transport that drives the upwelled tracers to the north and a localized opposing eddy transport that induces tracer leakages to the south at major topographic obstacles. In the Ekman layer, the southward eddy transport only partially compensates the northward Ekman transport, while below the Ekman layer, the sout...


Journal of Climate | 2015

Seasonal Predictability of Extratropical Storm Tracks in GFDL’s High-Resolution Climate Prediction Model

Xiaosong Yang; Gabriel A. Vecchi; Rich Gudgel; Thomas L. Delworth; Shaoqing Zhang; Anthony Rosati; Liwei Jia; William F. Stern; Andrew T. Wittenberg; Sarah B. Kapnick; Rym Msadek; Seth Underwood; Fanrong Zeng; Whit G. Anderson; Venkatramani Balaji

AbstractThe seasonal predictability of extratropical storm tracks in the Geophysical Fluid Dynamics Laboratory’s (GFDL)’s high-resolution climate model has been investigated using an average predictability time analysis. The leading predictable components of extratropical storm tracks are the ENSO-related spatial patterns for both boreal winter and summer, and the second predictable components are mostly due to changes in external radiative forcing and multidecadal oceanic variability. These two predictable components for both seasons show significant correlation skill for all leads from 0 to 9 months, while the skill of predicting the boreal winter storm track is consistently higher than that of the austral winter. The predictable components of extratropical storm tracks are dynamically consistent with the predictable components of the upper troposphere jet flow for both seasons. Over the region with strong storm-track signals in North America, the model is able to predict the changes in statistics of ex...


Geophysical Research Letters | 2014

Has coarse ocean resolution biased simulations of transient climate sensitivity

Michael Winton; Whit G. Anderson; Thomas L. Delworth; Stephen M. Griffies; W. Hurlin; Anthony Rosati

We investigate the influence of ocean component resolution on simulation of climate sensitivity using variants of the GFDL CM2.5 climate model incorporating eddy-resolving (1/10°) and eddy-parameterizing (1°) ocean resolutions. Two parameterization configurations of the coarse-resolution model are used yielding a three-model suite with significant variation in the transient climate response (TCR). The variation of TCR in this suite and in an enhanced group of 10 GFDL models is found to be strongly associated with the control climate Atlantic meridional overturning circulation (AMOC) magnitude and its decline under forcing. We find that it is the AMOC behavior rather than resolution per se that accounts for most of the TCR differences. A smaller difference in TCR stems from the eddy-resolving model having more Southern Ocean surface warming than the coarse models.

Collaboration


Dive into the Whit G. Anderson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas L. Delworth

Geophysical Fluid Dynamics Laboratory

View shared research outputs
Top Co-Authors

Avatar

Anthony Rosati

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Andrew T. Wittenberg

Geophysical Fluid Dynamics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith W. Dixon

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Seth Underwood

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen M. Griffies

Geophysical Fluid Dynamics Laboratory

View shared research outputs
Top Co-Authors

Avatar

Rym Msadek

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge