Anton Matafonov
Vanderbilt University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anton Matafonov.
Journal of Immunology | 2004
Sergey Ryzhov; Anna E. Goldstein; Anton Matafonov; Dewan Zeng; Italo Biaggioni; Igor Feoktistov
Adenosine provokes bronchoconstriction in asthmatics through acute activation of mast cells, but its potential role in chronic inflammation has not been adequately characterized. We hypothesized that adenosine up-regulates Th2 cytokines in mast cells, thus promoting IgE synthesis by B lymphocytes. We tested this hypothesis in human mast cells (HMC-1) expressing A2A, A2B, and A3 adenosine receptors. The adenosine analog 5′-N-ethylcarboxamidoadenosine (NECA) (10 μM) increased mRNA expression of IL-1β, IL-3, IL-4, IL-8, and IL-13, but not IL-2 and IFN-γ. Up-regulation of IL-4 and IL-13 was verified using RT-PCR and ELISA; 10 μM NECA increased IL-13 concentrations in HMC-1 conditioned medium 28-fold, from 7.6 ± 0.3 to 215 ± 4 pg/ml, and increased IL-4 concentrations 6-fold, from 19.2 ± 0.1 to 117 ± 2 pg/ml. This effect was mediated by A2B receptors because neither the selective A2A agonist 2-p-(2-carboxyethyl)phenethylamino-NECA nor the selective A3 agonist N6-(3-iodobenzyl)-N-methyl-5′-carbamoyladenosine reproduced it, and the selective A2B antagonist 3-isobutyl-8-pyrrolidinoxanthine prevented it. Constitutive expression of CD40 ligand on HMC-1 surface was not altered by NECA. Human B lymphocytes cocultured for 12 days with NECA-stimulated HMC-1 produced 870 ± 33 pg IgE per 106 B cells, whereas lymphocytes cocultured with nonstimulated HMC-1, or cultured alone in the absence or in the presence of NECA, produced no IgE. Thus, we demonstrated induction of IgE synthesis by the interaction between adenosine-stimulated mast cells and B lymphocytes, and suggest that this mechanism is involved in the amplification of the allergic inflammatory responses associated with asthma.
Blood | 2010
Qiufang Cheng; Erik I. Tucker; Meghann S. Pine; India Sisler; Anton Matafonov; Mao Fu Sun; Tara C. White-Adams; Stephanie A. Smith; Stephen R. Hanson; Owen J. T. McCarty; Thomas Renné; Andras Gruber; David Gailani
Mice lacking factor XII (fXII) or factor XI (fXI) are resistant to experimentally-induced thrombosis, suggesting fXIIa activation of fXI contributes to thrombus formation in vivo. It is not clear whether this reaction has relevance for thrombosis in pri mates. In 2 carotid artery injury models (FeCl(3) and Rose Bengal/laser), fXII-deficient mice are more resistant to thrombosis than fXI- or factor IX (fIX)-deficient mice, raising the possibility that fXII and fXI function in distinct pathways. Antibody 14E11 binds fXI from a variety of mammals and interferes with fXI activation by fXIIa in vitro. In mice, 14E11 prevented arterial occlusion induced by FeCl(3) to a similar degree to total fXI deficiency. 14E11 also had a modest beneficial effect in a tissue factor-induced pulmonary embolism model, indicating fXI and fXII contribute to thrombus formation even when factor VIIa/tissue factor initiates thrombosis. In baboons, 14E11 reduced platelet-rich thrombus growth in collagen-coated grafts inserted into an arteriovenous shunt. These data support the hypothesis that fXIIa-mediated fXI activation contributes to thrombus formation in rodents and primates. Since fXII deficiency does not impair hemostasis, targeted inhibition of fXI activation by fXIIa may be a useful antithrombotic strategy associated with a low risk of bleeding complications.
Hypertension | 2004
Igor Feoktistov; Sergey Ryzhov; Hongyan Zhong; Anna E. Goldstein; Anton Matafonov; Dewan Zeng; Italo Biaggioni
We previously reported that adenosine A2B receptor activation stimulates angiogenesis. Because hypoxia is a potent stimulus for the release of both adenosine and angiogenic factors, we tested the hypothesis that hypoxia alters the expression of adenosine receptors toward an “angiogenic” phenotype. We used human umbilical vein endothelial cells (HUVECs) and bronchial smooth muscle cells (BSMCs) because, under normoxic conditions, adenosine does not release vascular endothelial growth factor (VEGF). HUVECs expressed a characteristic A2A phenotype (the selective A2A agonist CGS21680 was as potent as the nonselective agonist 5′-N-ethylcarboxamidoadenosine [NECA] in generating cAMP). Hypoxia (4.6% O2, 3 hours) decreased A2A mRNA from 1.56±0.3% to 0.16±0.01% of &bgr;-actin expression but increased A2B mRNA from 0.08±0.01% to 0.27±0.05%. Consistent with changes in receptor expression, CGS21680 failed to increase cAMP in hypoxic HUVECs, whereas NECA remained active (A2B phenotype), and NECA increased VEGF release from 9.5±1.0 to 14.2±1.2 pg/mL (P<0.05), indicating that increased A2B receptors were functionally coupled to upregulation of VEGF. Hypoxia had similar effects on BSMCs, increasing A2B mRNA by 2.4±0.3-fold, from 0.42±0.04% to 1.00±0.13% of &bgr;-actin. Whereas NECA had no effect on VEGF release in normoxic BSMCs, it increased VEGF release in hypoxic BSMCs, from 74.6±9.6 to 188.3±16.7 pg/mL (P<0.01), and a selective A2B antagonist, CVT-6694, inhibited this increase. A2B receptors activated a VEGF reporter made unresponsive to hypoxia by mutating its hypoxia-inducible factor-1 (HIF-1) binding element, indicating a mechanism independent of HIF-1. In conclusion, hypoxia modulates the expression of adenosine receptors in human endothelial and smooth muscle cells toward an A2B“angiogenic” phenotype.
Blood | 2014
Anton Matafonov; Philberta Y. Leung; Adam E. Gailani; Stephanie L. Grach; Cristina Puy; Qiufang Cheng; Mao Fu Sun; Owen J. T. McCarty; Erik I. Tucker; Hiroaki Kataoka; Thomas Renné; James H. Morrissey; Andras Gruber; David Gailani
The plasma zymogens factor XII (fXII) and factor XI (fXI) contribute to thrombosis in a variety of mouse models. These proteins serve a limited role in hemostasis, suggesting that antithrombotic therapies targeting them may be associated with low bleeding risks. Although there is substantial epidemiologic evidence supporting a role for fXI in human thrombosis, the situation is not as clear for fXII. We generated monoclonal antibodies (9A2 and 15H8) against the human fXII heavy chain that interfere with fXII conversion to the protease factor XIIa (fXIIa). The anti-fXII antibodies were tested in models in which anti-fXI antibodies are known to have antithrombotic effects. Both anti-fXII antibodies reduced fibrin formation in human blood perfused through collagen-coated tubes. fXII-deficient mice are resistant to ferric chloride-induced arterial thrombosis, and this resistance can be reversed by infusion of human fXII. 9A2 partially blocks, and 15H8 completely blocks, the prothrombotic effect of fXII in this model. 15H8 prolonged the activated partial thromboplastin time of baboon and human plasmas. 15H8 reduced fibrin formation in collagen-coated vascular grafts inserted into arteriovenous shunts in baboons, and reduced fibrin and platelet accumulation downstream of the graft. These findings support a role for fXII in thrombus formation in primates.
Blood | 2009
Dmitri V. Kravtsov; Anton Matafonov; Erik I. Tucker; Mao Fu Sun; Peter N. Walsh; Andras Gruber; David Gailani
During surface-initiated blood coagulation in vitro, activated factor XII (fXIIa) converts factor XI (fXI) to fXIa. Whereas fXI deficiency is associated with a hemorrhagic disorder, factor XII deficiency is not, suggesting that fXI can be activated by other mechanisms in vivo. Thrombin activates fXI, and several studies suggest that fXI promotes coagulation independent of fXII. However, a recent study failed to find evidence for fXII-independent activation of fXI in plasma. Using plasma in which fXII is either inhibited or absent, we show that fXI contributes to plasma thrombin generation when coagulation is initiated with low concentrations of tissue factor, factor Xa, or alpha-thrombin. The results could not be accounted for by fXIa contamination of the plasma systems. Replacing fXI with recombinant fXI that activates factor IX poorly, or fXI that is activated poorly by thrombin, reduced thrombin generation. An antibody that blocks fXIa activation of factor IX reduced thrombin generation; however, an antibody that specifically interferes with fXI activation by fXIIa did not. The results support a model in which fXI is activated by thrombin or another protease generated early in coagulation, with the resulting fXIa contributing to sustained thrombin generation through activation of factor IX.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2013
Jeffrey R. Crosby; Ulla M. Marzec; Alexey S. Revenko; Chenguang Zhao; Dacao Gao; Anton Matafonov; David Gailani; A. Robert MacLeod; Erik I. Tucker; Andras Gruber; Stephen R. Hanson; Brett P. Monia
Objective—During coagulation, factor IX (FIX) is activated by 2 distinct mechanisms mediated by the active proteases of either FVIIa or FXIa. Both coagulation factors may contribute to thrombosis; FXI, however, plays only a limited role in the arrest of bleeding. Therefore, therapeutic targeting of FXI may produce an antithrombotic effect with relatively low hemostatic risk. Approach and Results—We have reported that reducing FXI levels with FXI antisense oligonucleotides produces antithrombotic activity in mice, and that administration of FXI antisense oligonucleotides to primates decreases circulating FXI levels and activity in a dose-dependent and time-dependent manner. Here, we evaluated the relationship between FXI plasma levels and thrombogenicity in an established baboon model of thrombosis and hemostasis. In previous studies with this model, antibody-induced inhibition of FXI produced potent antithrombotic effects. In the present article, antisense oligonucleotides–mediated reduction of FXI plasma levels by ≥50% resulted in a demonstrable and sustained antithrombotic effect without an increased risk of bleeding. Conclusions—These results indicate that reducing FXI levels using antisense oligonucleotides is a promising alternative to direct FXI inhibition, and that targeting FXI may be potentially safer than conventional antithrombotic therapies that can markedly impair primary hemostasis.
Blood | 2011
Anton Matafonov; Suryakala Sarilla; Mao-fu Sun; Vladimir Serebrov; Ingrid M. Verhamme; David Gailani
The prothrombinase complex converts prothrombin to α-thrombin through the intermediate meizothrombin (Mz-IIa). Both α-thrombin and Mz-IIa catalyze factor (F) XI activation to FXIa, which sustains α-thrombin production through activation of FIX. The interaction with FXI is thought to involve thrombin anion binding exosite (ABE) I. α-Thrombin can undergo additional proteolysis to β-thrombin and γ-thrombin, neither of which have an intact ABE I. In a purified protein system, FXI is activated by β-thrombin or γ-thrombin, and by α-thrombin in the presence of the ABE I-blocking peptide hirugen, indicating that a fully formed ABE I is not absolutely required for FXI activation. In a FXI-dependent plasma thrombin generation assay, β-thrombin, γ-thrombin, and α-thrombins with mutations in ABE I are approximately 2-fold more potent initiators of thrombin generation than α-thrombin or Mz-IIa, possibly because fibrinogen, which binds to ABE I, competes poorly with FXI for forms of thrombin lacking ABE I. In addition, FXIa can activate factor FXII, which could contribute to thrombin generation through FXIIa-mediated FXI activation. The data indicate that forms of thrombin other than α-thrombin contribute directly to feedback activation of FXI in plasma and suggest that FXIa may provide a link between tissue factor-initiated coagulation and the proteases of the contact system.
Journal of Thrombosis and Haemostasis | 2013
Anton Matafonov; Qiufang Cheng; Yipeng Geng; Ingrid M. Verhamme; Obi Umunakwe; Erik I. Tucker; Mao-fu Sun; Vladimir Serebrov; Andras Gruber; David Gailani
Factor XIa is traditionally assigned a role in FIX activation during coagulation. However, recent evidence suggests this protease may have additional plasma substrates.
Blood | 2015
Cristina Puy; Erik I. Tucker; Anton Matafonov; Qiufang Cheng; Keith D. Zientek; Dave Gailani; Andras Gruber; Owen J. T. McCarty
Activation of coagulation factor XI (FXI) may play a role in hemostasis. The primary substrate of activated FXI (FXIa) is FIX, leading to FX activation (FXa) and thrombin generation. However, recent studies suggest the hemostatic role of FXI may not be restricted to the activation of FIX. We explored whether FXI could interact with and inhibit the activity of tissue factor pathway inhibitor (TFPI). TFPI is an essential reversible inhibitor of activated factor X (FXa) and also inhibits the FVIIa-TF complex. We found that FXIa neutralized both endothelium- and platelet-derived TFPI by cleaving the protein between the Kunitz (K) 1 and K2 domains (Lys86/Thr87) and at the active sites of the K2 (Arg107/Gly108) and K3 (Arg199/Ala200) domains. Addition of FXIa to plasma was able to reverse the ability of TFPI to prolong TF-initiated clotting times in FXI- or FIX-deficient plasma, as well as FXa-initiated clotting times in FX-deficient plasma. Treatment of cultured endothelial cells with FXIa increased the generation of FXa and promoted TF-dependent fibrin formation in recalcified plasma. Together, these results suggest that the hemostatic role of FXIa may be attributed not only to activation of FIX but also to promoting the extrinsic pathway of thrombin generation through inactivation of TFPI.
Blood | 2013
Yipeng Geng; Ingrid M. Verhamme; Stephen B. Smith; Mao Fu Sun; Anton Matafonov; Qiufang Cheng; Stephanie A. Smith; James H. Morrissey; David Gailani
Factor XI (fXI) is a homodimeric zymogen that is converted to a protease with 1 (1/2-fXIa) or 2 (fXIa) active subunits by factor XIIa (fXIIa) or thrombin. It has been proposed that the dimeric structure is required for normal fXI activation. Consistent with this premise, fXI monomers do not reconstitute fXI-deficient mice in a fXIIa-dependent thrombosis model. FXI activation by fXIIa or thrombin is a slow reaction that can be accelerated by polyanions. Phosphate polymers released from platelets (poly-P) can enhance fXI activation by thrombin and promote fXI autoactivation. Poly-P increased initial rates of fXI activation 30- and 3000-fold for fXIIa and thrombin, respectively. FXI monomers were activated more slowly than dimers by fXIIa in the presence of poly-P. However, this defect was not observed when thrombin was the activating protease, nor during fXI autoactivation. The data suggest that fXIIa and thrombin activate fXI by different mechanisms. FXIIa may activate fXI through a trans-activation mechanism in which the protease binds to 1 subunit of the dimer, while activating the other subunit. For activation by thrombin, or during autoactivation, the data support a cis-activation mechanism in which the activating protease binds to and activates the same fXI subunit.