Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ingrid M. Verhamme is active.

Publication


Featured researches published by Ingrid M. Verhamme.


Journal of Biological Chemistry | 1995

Serpin-Protease Complexes Are Trapped as Stable Acyl-Enzyme Intermediates

Daniel A. Lawrence; David Ginsburg; Duane E. Day; Mitchell B. Berkenpas; Ingrid M. Verhamme; Jan-Olov Kvassman; Joseph D. Shore

The serine protease inhibitors of the serpin family are an unusual group of proteins thought to have metastable native structures. Functionally, they are unique among polypeptide protease inhibitors, although their precise mechanism of action remains controversial. Conflicting results from previous studies have suggested that the stable serpin-protease complex is trapped in either a tight Michaelis-like structure, a tetrahedral intermediate, or an acyl-enzyme. In this report we show that, upon association with a target protease, the serpin reactive-center loop (RCL) is cleaved resulting in formation of an acyl-enzyme intermediate. This cleavage is coupled to rapid movement of the RCL into the body of the protein bringing the inhibitor closer to its lowest free energy state. From these data we suggest a model for serpin action in which the drive toward the lowest free energy state results in trapping of the protease-inhibitor complex as an acyl-enzyme intermediate.


Nature | 2003

Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation

Rainer W. Friedrich; Peter Panizzi; Pablo Fuentes-Prior; Klaus Richter; Ingrid M. Verhamme; Patricia J. Anderson; Shun-ichiro Kawabata; Robert Huber; Wolfram Bode; Paul E. Bock

Many bacterial pathogens secrete proteins that activate host trypsinogen-like enzyme precursors, most notably the proenzymes of the blood coagulation and fibrinolysis systems. Staphylococcus aureus, an important human pathogen implicated in sepsis and endocarditis, secretes the cofactor staphylocoagulase, which activates prothrombin, without the usual proteolytic cleavages, to directly initiate blood clotting. Here we present the 2.2 Å crystal structures of human α-thrombin and prethrombin-2 bound to a fully active staphylocoagulase variant. The cofactor consists of two domains, each with three-helix bundles; this is a novel fold that is distinct from known serine proteinase activators, particularly the streptococcal plasminogen activator streptokinase. The staphylocoagulase fold is conserved in other bacterial plasma-protein-binding factors and extracellular-matrix-binding factors. Kinetic studies confirm the importance of isoleucine 1 and valine 2 at the amino terminus of staphylocoagulase for zymogen activation. In addition to making contacts with the 148 loop and (pro)exosite I of prethrombin-2, staphylocoagulase inserts its N-terminal peptide into the activation pocket of bound prethrombin-2, allosterically inducing functional catalytic machinery. These investigations demonstrate unambiguously the validity of the zymogen-activation mechanism known as ‘molecular sexuality’.


Journal of Thrombosis and Haemostasis | 2007

Exosites in the substrate specificity of blood coagulation reactions

Paul E. Bock; Peter Panizzi; Ingrid M. Verhamme

Summary.  The specificity of blood coagulation proteinases for substrate, inhibitor, and effector recognition is mediated by exosites on the surfaces of the catalytic domains, physically separated from the catalytic site. Some thrombin ligands bind specifically to either exosite I or II, while others engage both exosites. The involvement of different, overlapping constellations of exosite residues enables binding of structurally diverse ligands. The flexibility of the thrombin structure is central to the mechanism of complex formation and the specificity of exosite interactions. Encounter complex formation is driven by electrostatic ligand–exosite interactions, followed by conformational rearrangement to a stable complex. Exosites on some zymogens are in low affinity proexosite states and are expressed concomitant with catalytic site activation. The requirement for exosite expression controls the specificity of assembly of catalytic complexes on the coagulation pathway, such as the membrane‐bound factor Xa•factor Va (prothrombinase) complex, and prevents premature assembly. Substrate recognition by prothrombinase involves a two‐step mechanism with initial docking of prothrombin to exosites, followed by a conformational change to engage the FXa catalytic site. Prothrombin and its activation intermediates bind prothrombinase in two alternative conformations determined by the zymogen to proteinase transition that are hypothesized to involve prothrombin (pro)exosite I interactions with FVa, which underpin the sequential activation pathway. The role of exosites as the major source of substrate specificity has stimulated development of exosite‐targeted anticoagulants for treatment of thrombosis.


Journal of Biological Chemistry | 1999

Accelerated Conversion of Human Plasminogen Activator Inhibitor-1 to Its Latent Form by Antibody Binding

Ingrid M. Verhamme; Jan-Olov Kvassman; Duane E. Day; Sophie Debrock; Nele Vleugels; Paul Declerck; Joseph D. Shore

The serpin plasminogen activator inhibitor-1 (PAI-1) slowly converts to an inactive latent form by inserting a major part of its reactive center loop (RCL) into its β-sheet A. A murine monoclonal antibody (MA-33B8), raised against the human plasminogen activator (tPA)·PAI-1 complex, rapidly inactivates PAI-1. Results presented here indicate that MA-33B8 induces acceleration of the active-to-latent conversion. The antibody-induced inactivation of PAI-1 labeled with the fluorescent probeN,N′-dimethyl-N-(acetyl)-N′-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) ethylene diamine (NBD) at P9 in the RCL caused a fluorescence enhancement and shift identical to those accompanying the spontaneous conversion of the P9·NBD PAI-1 to the latent form. Like latent PAI-1, antibody-inactivated PAI-1 was protected from cleavage by elastase. The rate constants for MA-33B8 binding, measured by NBD fluorescence or inactivation, were similar (1.3–1.8 × 104 m −1 s−1), resulting in a 4000-fold faster inactivation at 4.2 μm antibody binding sites. The apparent antibody binding rate constant, at least 1000 times slower than one limited by diffusion, indicates that exposure of its epitope depends on an unfavorable equilibrium of PAI-1. Our observations are consistent with this idea and suggest that the equilibrium involves partial insertion of the RCL into sheet A: latent, RCL-cleaved, and tPA-complexed PAI-1, which are inactive loop-inserted forms, bound much faster than active PAI-1 to MA-33B8, whereas two loop-extracted forms of PAI-1, modified to prevent loop insertion, did not bind or bound much more weakly to the antibody.


Journal of Biological Chemistry | 1997

The Use of Fluorescent Probes to Characterize Conformational Changes in the Interaction between Vitronectin and Plasminogen Activator Inhibitor-1

Angelia D. Gibson; Kunnumal Baburaj; Duane E. Day; Ingrid M. Verhamme; Joseph D. Shore; Cynthia B. Peterson

Plasminogen activator inhibitor-1 (PAI-1), the primary inhibitor of tissue-type plasminogen activator and urokinase, is known to convert readily to a latent form by insertion of the reactive center loop into a central β-sheet. Interaction with vitronectin stabilizes PAI-1 and decreases the rate of conversion to the latent form, but conformational effects of vitronectin on the reactive center loop of PAI-1 have not been documented. Mutant forms of PAI-1 were designed with a cysteine substitution at either position P1′ or P9 of the reactive center loop. Labeling of the unique cysteine with a sulfhydryl-reactive fluorophore provides a probe that is sensitive to vitronectin binding. Results indicate that the scissile P1-P1′ bond of PAI-1 is more solvent exposed upon interaction with vitronectin, whereas the N-terminal portion of the reactive loop does not experience a significant change in its environment. These results were complemented by labeling vitronectin with an arginine-specific coumarin probe which compromises heparin binding but does not interfere with PAI-1 binding to the protein. Dissociation constants of approximately 100 nM are calculated for the vitronectin/PAI-1 interaction from titrations using both fluorescent probes. Furthermore, experiments in which PAI-1 failed to compete with heparin for binding to vitronectin argue for separate binding sites for the two ligands on vitronectin.


Blood | 2011

Activation of factor XI by products of prothrombin activation

Anton Matafonov; Suryakala Sarilla; Mao-fu Sun; Vladimir Serebrov; Ingrid M. Verhamme; David Gailani

The prothrombinase complex converts prothrombin to α-thrombin through the intermediate meizothrombin (Mz-IIa). Both α-thrombin and Mz-IIa catalyze factor (F) XI activation to FXIa, which sustains α-thrombin production through activation of FIX. The interaction with FXI is thought to involve thrombin anion binding exosite (ABE) I. α-Thrombin can undergo additional proteolysis to β-thrombin and γ-thrombin, neither of which have an intact ABE I. In a purified protein system, FXI is activated by β-thrombin or γ-thrombin, and by α-thrombin in the presence of the ABE I-blocking peptide hirugen, indicating that a fully formed ABE I is not absolutely required for FXI activation. In a FXI-dependent plasma thrombin generation assay, β-thrombin, γ-thrombin, and α-thrombins with mutations in ABE I are approximately 2-fold more potent initiators of thrombin generation than α-thrombin or Mz-IIa, possibly because fibrinogen, which binds to ABE I, competes poorly with FXI for forms of thrombin lacking ABE I. In addition, FXIa can activate factor FXII, which could contribute to thrombin generation through FXIIa-mediated FXI activation. The data indicate that forms of thrombin other than α-thrombin contribute directly to feedback activation of FXI in plasma and suggest that FXIa may provide a link between tissue factor-initiated coagulation and the proteases of the contact system.


Journal of Thrombosis and Haemostasis | 2013

Evidence for factor IX-independent roles for factor XIa in blood coagulation

Anton Matafonov; Qiufang Cheng; Yipeng Geng; Ingrid M. Verhamme; Obi Umunakwe; Erik I. Tucker; Mao-fu Sun; Vladimir Serebrov; Andras Gruber; David Gailani

Factor XIa is traditionally assigned a role in FIX activation during coagulation. However, recent evidence suggests this protease may have additional plasma substrates.


Journal of Biological Chemistry | 1996

Analogs of Human Plasminogen That Are Labeled with Fluorescence Probes at the Catalytic Site of the Zymogen PREPARATION, CHARACTERIZATION, AND INTERACTION WITH STREPTOKINASE

Paul E. Bock; Duane E. Day; Ingrid M. Verhamme; M. Margarida Bernardo; Steven T. Olson; Joseph D. Shore

Fluorescent analogs of the proteinase zymogen, plasminogen (Pg), which are specifically inactivated and labeled at the catalytic site have been prepared and characterized as probes of the mechanisms of Pg activation. The active site induced non-proteolytically in Pg by streptokinase (SK) was inactivated stoichiometrically with the thioester peptide chloromethyl ketone, Nα-[(acetylthio)acetyl]-(D-Phe)-Phe-Arg-CH2Cl; the thiol group generated subsequently on the incorporated inhibitor with NH2OH was quantitatively labeled with the fluorescence probe, 2-((4′-iodoacetamido)anilino)naphthalene-6-sulfonic acid; and the labeled Pg was separated from SK. Cleavage of labeled [Glu]Pg1 by urokinase-type plasminogen activator (uPA) was accompanied by a fluorescence enhancement (ΔFmax/Fo) of 2.0, and formation of 1% plasmin (Pm) activity. Comparison of labeled and native [Glu]Pg1 as uPA substrates showed that activation of labeled [Glu]Pg1 generated [Glu]Pm1 as the major product, while native [Glu]Pg1 was activated at a faster rate and produced [Lys]Pm1 because of concurrent proteolysis by plasmin. When a mixture of labeled and native Pg was activated, to include plasmin-feedback reactions, the zymogens were activated at equivalent rates. The lack of potential proteolytic activity of the Pg derivatives allowed their interactions with SK to be studied under equilibrium binding conditions. SK bound to labeled [Glu]Pg1 and [Lys]Pg1 with dissociation constants of 590 ± 110 and 11 ± 7 nM, and fluorescence enhancements of 3.1 ± 0.1 and 1.6 ± 0.1, respectively. Characterization of the interaction of SK with native [Glu]Pg1 by the use of labeled [Glu]Pg1 as a probe indicated a ∼6-fold higher affinity of SK for the native Pg zymogen compared to the labeled Pg analog. Saturating levels of ϵ-aminocaproic acid reduced the affinity of SK for labeled [Glu]Pg1 by ∼2-fold and lowered the fluorescence enhancement to 1.8 ± 0.1, whereas the affinity of SK for labeled [Lys]Pg1 was reduced by ∼98-fold with little effect on the enhancement. These results demonstrate that occupation of lysine binding sites modulates the affinity of SK for Pg and the changes in the environment of the catalytic site associated with SK-induced conformational activation. Together, these studies show that the labeled Pg derivatives behave as analogs of native Pg which report functionally significant changes in the environment of the catalytic site of the zymogen.


Journal of Biological Chemistry | 2008

Characterization of Novel Forms of Coagulation Factor XIa: INDEPENDENCE OF FACTOR XIa SUBUNITS IN FACTOR IX ACTIVATION*

Stephen B. Smith; Ingrid M. Verhamme; Mao-fu Sun; Paul E. Bock; David Gailani

Factor XI is the zymogen of a dimeric plasma protease, factor XIa, with two active sites. In solution, and during contact activation in plasma, conversion of factor XI to factor XIa proceeds through an intermediate with one active site (1/2-FXIa). Factor XIa and 1/2-FXIa activate the substrate factor IX, with similar kinetic parameters in purified and plasma systems. During hemostasis, factor IX is activated by factors XIa or VIIa, by cleavage of the peptide bonds after Arg145 and Arg180. Factor VIIa cleaves these bonds sequentially, with accumulation of factor IXα, an intermediate cleaved after Arg145. Factor XIa also cleaves factor IX preferentially after Arg145, but little intermediate is detected. It has been postulated that the two factor XIa active sites cleave both factor IX peptide bonds prior to releasing factor IXaβ. To test this, we examined cleavage of factor IX by four single active site factor XIa proteases. Little intermediate formation was detected with 1/2-FXIa, factor XIa with one inhibited active site, or a recombinant factor XIa monomer. However, factor IXα accumulated during activation by the factor XIa catalytic domain, demonstrating the importance of the factor XIa heavy chain. Fluorescence titration of active site-labeled factor XIa revealed a binding stoichiometry of 1.9 ± 0.4 mol of factor IX/mol of factor XIa (Kd = 70 ± 40 nm). The results indicate that two forms of activated factor XI are generated during coagulation, and that each half of a factor XIa dimer behaves as an independent enzyme with respect to factor IX.


Blood | 2013

The dimeric structure of factor XI and zymogen activation.

Yipeng Geng; Ingrid M. Verhamme; Stephen B. Smith; Mao Fu Sun; Anton Matafonov; Qiufang Cheng; Stephanie A. Smith; James H. Morrissey; David Gailani

Factor XI (fXI) is a homodimeric zymogen that is converted to a protease with 1 (1/2-fXIa) or 2 (fXIa) active subunits by factor XIIa (fXIIa) or thrombin. It has been proposed that the dimeric structure is required for normal fXI activation. Consistent with this premise, fXI monomers do not reconstitute fXI-deficient mice in a fXIIa-dependent thrombosis model. FXI activation by fXIIa or thrombin is a slow reaction that can be accelerated by polyanions. Phosphate polymers released from platelets (poly-P) can enhance fXI activation by thrombin and promote fXI autoactivation. Poly-P increased initial rates of fXI activation 30- and 3000-fold for fXIIa and thrombin, respectively. FXI monomers were activated more slowly than dimers by fXIIa in the presence of poly-P. However, this defect was not observed when thrombin was the activating protease, nor during fXI autoactivation. The data suggest that fXIIa and thrombin activate fXI by different mechanisms. FXIIa may activate fXI through a trans-activation mechanism in which the protease binds to 1 subunit of the dimer, while activating the other subunit. For activation by thrombin, or during autoactivation, the data support a cis-activation mechanism in which the activating protease binds to and activates the same fXI subunit.

Collaboration


Dive into the Ingrid M. Verhamme's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen B. Smith

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge