Antonella Montinaro
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonella Montinaro.
EMBO Reports | 2014
Julia Zinngrebe; Antonella Montinaro; Nieves Peltzer; Henning Walczak
Ubiquitination is a post‐translational modification process that has been implicated in the regulation of innate and adaptive immune responses. There is increasing evidence that both ubiquitination and its reversal, deubiquitination, play crucial roles not only during the development of the immune system but also in the orchestration of an immune response by ensuring the proper functioning of the different cell types that constitute the immune system. Here, we provide an overview of the latest discoveries in this field and discuss how they impact our understanding of the ubiquitin system in host defence mechanisms as well as self‐tolerance.
Cell Reports | 2014
Nieves Peltzer; Eva Rieser; Lucia Taraborrelli; Peter Draber; Maurice Darding; Barbara Pernaute; Yutaka Shimizu; Aida Sarr; Helena Draberova; Antonella Montinaro; Juan Pedro Martinez-Barbera; John Silke; Tristan A. Rodriguez; Henning Walczak
Linear ubiquitination is crucial for innate and adaptive immunity. The linear ubiquitin chain assembly complex (LUBAC), consisting of HOIL-1, HOIP, and SHARPIN, is the only known ubiquitin ligase that generates linear ubiquitin linkages. HOIP is the catalytically active LUBAC component. Here, we show that both constitutive and Tie2-Cre-driven HOIP deletion lead to aberrant endothelial cell death, resulting in defective vascularization and embryonic lethality at midgestation. Ablation of tumor necrosis factor receptor 1 (TNFR1) prevents cell death, vascularization defects, and death at midgestation. HOIP-deficient cells are more sensitive to death induction by both tumor necrosis factor (TNF) and lymphotoxin-α (LT-α), and aberrant complex-II formation is responsible for sensitization to TNFR1-mediated cell death in the absence of HOIP. Finally, we show that HOIPs catalytic activity is necessary for preventing TNF-induced cell death. Hence, LUBAC and its linear-ubiquitin-forming activity are required for maintaining vascular integrity during embryogenesis by preventing TNFR1-mediated endothelial cell death.
Cell Death & Differentiation | 2014
J Lemke; S von Karstedt; M Abd El Hay; Annalisa Conti; F Arce; Antonella Montinaro; K Papenfuss; Mona El-Bahrawy; Henning Walczak
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in many cancer cells without causing toxicity in vivo. However, to date, TRAIL-receptor agonists have only shown limited therapeutic benefit in clinical trials. This can, most likely, be attributed to the fact that 50% of all cancer cell lines and most primary human cancers are TRAIL resistant. Consequently, future TRAIL-based therapies will require the addition of sensitizing agents that remove crucial blocks in the TRAIL apoptosis pathway. Here, we identify PIK-75, a small molecule inhibitor of the p110α isoform of phosphoinositide-3 kinase (PI3K), as an exceptionally potent TRAIL apoptosis sensitizer. Surprisingly, PI3K inhibition was not responsible for this activity. A kinome-wide in vitro screen revealed that PIK-75 strongly inhibits a panel of 27 kinases in addition to p110α. Within this panel, we identified cyclin-dependent kinase 9 (CDK9) as responsible for TRAIL resistance of cancer cells. Combination of CDK9 inhibition with TRAIL effectively induced apoptosis even in highly TRAIL-resistant cancer cells. Mechanistically, CDK9 inhibition resulted in downregulation of cellular FLICE-like inhibitory protein (cFlip) and Mcl-1 at both the mRNA and protein levels. Concomitant cFlip and Mcl-1 downregulation was required and sufficient for TRAIL sensitization by CDK9 inhibition. When evaluating cancer selectivity of TRAIL combined with SNS-032, the most selective and clinically used inhibitor of CDK9, we found that a panel of mostly TRAIL-resistant non-small cell lung cancer cell lines was readily killed, even at low concentrations of TRAIL. Primary human hepatocytes did not succumb to the same treatment regime, defining a therapeutic window. Importantly, TRAIL in combination with SNS-032 eradicated established, orthotopic lung cancer xenografts in vivo. Based on the high potency of CDK9 inhibition as a cancer cell-selective TRAIL-sensitizing strategy, we envisage the development of new, highly effective cancer therapies.
Nature Reviews Cancer | 2017
Silvia von Karstedt; Antonella Montinaro; Henning Walczak
The discovery that the tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis of cancer cells without causing toxicity in mice has led to the in-depth study of pro-apoptotic TRAIL receptor (TRAIL-R) signalling and the development of biotherapeutic drug candidates that activate TRAIL-Rs. The outcome of clinical trials with these TRAIL-R agonists has, however, been disappointing so far. Recent evidence indicates that many cancers, in addition to being TRAIL resistant, use the endogenous TRAIL–TRAIL-R system to their own advantage. However, novel insight on two fronts — how resistance of cancer cells to TRAIL-based pro-apoptotic therapies might be overcome, and how the pro-tumorigenic effects of endogenous TRAIL might be countered — gives reasonable hope that the TRAIL system can be harnessed to treat cancer. In this Review we assess the status quo of our understanding of the biology of the TRAIL–TRAIL-R system — as well as the gaps therein — and discuss the opportunities and challenges in effectively targeting this pathway.
Molecular Cell | 2017
Torsten Hartwig; Antonella Montinaro; Silvia von Karstedt; Alexandra Sevko; Silvia Surinova; Ankur Chakravarthy; Lucia Taraborrelli; Peter Draber; Elodie Lafont; Frederick Arce Vargas; Mona El-Bahrawy; Sergio A. Quezada; Henning Walczak
Summary Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is known for specifically killing cancer cells, whereas in resistant cancers, TRAIL/TRAIL-R can promote metastasis via Rac1 and PI3K. It remains unknown, however, whether and to what extent TRAIL/TRAIL-R signaling in cancer cells can affect the immune microenvironment. Here we show that TRAIL-triggered cytokine secretion from TRAIL-resistant cancer cells is FADD dependent and identify the TRAIL-induced secretome to drive monocyte polarization to myeloid-derived suppressor cells (MDSCs) and M2-like macrophages. TRAIL-R suppression in tumor cells impaired CCL2 production and diminished both lung MDSC presence and tumor growth. In accordance, the receptor of CCL2, CCR2, is required to facilitate increased MDSC presence and tumor growth. Finally, TRAIL and CCL2 are co-regulated with MDSC/M2 markers in lung adenocarcinoma patients. Collectively, endogenous TRAIL/TRAIL-R-mediated CCL2 secretion promotes accumulation of tumor-supportive immune cells in the cancer microenvironment, thereby revealing a tumor-supportive immune-modulatory role of the TRAIL/TRAIL-R system in cancer biology.
Pharmacological Research | 2013
Antonella Montinaro; Raffaella Iannone; Aldo Pinto; Silvana Morello
Melanoma is one of the most aggressive types of cancer, that is difficult to manage clinically. A major feature of melanoma cells is their ability to escape immune surveillance. Adenosine receptors play a pivotal role in host immune-surveillance. A2a (A2aR) and, partially, A2bR receptors mediate the adenosine-induced immune-suppression, which markedly facilitates tumor development/progression. On the contrary, A3R stimulation enhances the anti-tumor immune response and thus limits tumor growth. A3R also inhibits the proliferation of many cancer cells. Given that A2aR and A3R have profound effects on tumor growth and metastasis, they are attractive targets for novel therapeutic anti-cancer agents. Here, we review the role played by A2aR and A3R in regulating cancer pathogenesis, with a focus on melanoma, and the therapeutic potential of adenosine receptors pharmacological modulation.
eLife | 2018
K Kolluri; Constantine Alifrangis; Neelam Kumar; Yuki Ishii; Stacey Price; Magali Michaut; Steven P. Williams; Syd Barthorpe; Howard Lightfoot; Sara Busacca; Annabel J. Sharkey; Zhenqiang Yuan; Elizabeth K. Sage; Sabarinath Vallath; John Le Quesne; David A. Tice; Doraid Alrifai; Sylvia von Karstedt; Antonella Montinaro; Naomi J. Guppy; David A. Waller; Apostolos Nakas; Robert Good; Alan M. Holmes; Henning Walczak; Dean A. Fennell; Mathew J. Garnett; Francesco Iorio; Lodewyk F. A. Wessels; Ultan McDermott
Malignant mesothelioma (MM) is poorly responsive to systemic cytotoxic chemotherapy and invariably fatal. Here we describe a screen of 94 drugs in 15 exome-sequenced MM lines and the discovery of a subset defined by loss of function of the nuclear deubiquitinase BRCA associated protein-1 (BAP1) that demonstrate heightened sensitivity to TRAIL (tumour necrosis factor-related apoptosis-inducing ligand). This association is observed across human early passage MM cultures, mouse xenografts and human tumour explants. We demonstrate that BAP1 deubiquitinase activity and its association with ASXL1 to form the Polycomb repressive deubiquitinase complex (PR-DUB) impacts TRAIL sensitivity implicating transcriptional modulation as an underlying mechanism. Death receptor agonists are well-tolerated anti-cancer agents demonstrating limited therapeutic benefit in trials without a targeting biomarker. We identify BAP1 loss-of-function mutations, which are frequent in MM, as a potential genomic stratification tool for TRAIL sensitivity with immediate and actionable therapeutic implications.
Nature Communications | 2018
Lucia Taraborrelli; Nieves Peltzer; Antonella Montinaro; Sebastian Kupka; Eva Rieser; Torsten Hartwig; Aida Sarr; Maurice Darding; Peter Draber; Tobias L. Haas; Ayse U. Akarca; Teresa Marafioti; Manolis Pasparakis; John Bertin; Peter J. Gough; Andreas Strasser; Martin Leverkus; John Silke; Henning Walczak
The linear ubiquitin chain assembly complex (LUBAC), composed of HOIP, HOIL-1 and SHARPIN, is required for optimal TNF-mediated gene activation and to prevent cell death induced by TNF. Here, we demonstrate that keratinocyte-specific deletion of HOIP or HOIL-1 (E-KO) results in severe dermatitis causing postnatal lethality. We provide genetic and pharmacological evidence that the postnatal lethal dermatitis in HoipE-KO and Hoil-1E-KO mice is caused by TNFR1-induced, caspase-8-mediated apoptosis that occurs independently of the kinase activity of RIPK1. In the absence of TNFR1, however, dermatitis develops in adulthood, triggered by RIPK1-kinase-activity-dependent apoptosis and necroptosis. Strikingly, TRAIL or CD95L can redundantly induce this disease-causing cell death, as combined loss of their respective receptors is required to prevent TNFR1-independent dermatitis. These findings may have implications for the treatment of patients with mutations that perturb linear ubiquitination and potentially also for patients with inflammation-associated disorders that are refractory to inhibition of TNF alone.TNF mediated inflammation is critical in autoimmune mediated pathology, however many patients are refractory to current anti-TNF therapeutics. Here the authors show induction of several death ligands, in addition to TNF is sufficient to cause fatal dermatitis in a LUBAC deficient murine model of disease.
Cancer Cell | 2015
Silvia von Karstedt; Annalisa Conti; Max Nobis; Antonella Montinaro; Torsten Hartwig; Johannes Lemke; Karen Legler; Franka Annewanter; Andrew D. Campbell; Lucia Taraborrelli; Anne Grosse-Wilde; Johannes F. Coy; Mona El-Bahrawy; Frank Bergmann; Ronald Koschny; Jens Werner; Tom M. Ganten; Thomas Schweiger; Konrad Hoetzenecker; István Kenessey; Balazs Hegedus; Michael Bergmann; Charlotte Hauser; Jan Hendrik Egberts; Thomas Becker; Christoph Röcken; Holger Kalthoff; Anna Trauzold; Kurt I. Anderson; Owen J. Sansom
Oncogene | 2015
M H Tuthill; Antonella Montinaro; Julia Zinngrebe; K Prieske; Peter Draber; S Prieske; T Newsom-Davis; S von Karstedt; J Graves; Henning Walczak