Peter Draber
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter Draber.
Cell Reports | 2015
Peter Draber; Sebastian Kupka; Matthias Reichert; Helena Draberova; Elodie Lafont; Diego De Miguel; Lisanne Spilgies; Silvia Surinova; Lucia Taraborrelli; Torsten Hartwig; Eva Rieser; Luigi Martino; Katrin Rittinger; Henning Walczak
Summary Ubiquitination and deubiquitination are crucial for assembly and disassembly of signaling complexes. LUBAC-generated linear (M1) ubiquitin is important for signaling via various immune receptors. We show here that the deubiquitinases CYLD and A20, but not OTULIN, are recruited to the TNFR1- and NOD2-associated signaling complexes (TNF-RSC and NOD2-SC), at which they cooperate to limit gene activation. Whereas CYLD recruitment depends on its interaction with LUBAC, but not on LUBAC’s M1-chain-forming capacity, A20 recruitment requires this activity. Intriguingly, CYLD and A20 exert opposing effects on M1 chain stability in the TNF-RSC and NOD2-SC. While CYLD cleaves M1 chains, and thereby sensitizes cells to TNF-induced death, A20 binding to them prevents their removal and, consequently, inhibits cell death. Thus, CYLD and A20 cooperatively restrict gene activation and regulate cell death via their respective activities on M1 chains. Hence, the interplay between LUBAC, M1-ubiquitin, CYLD, and A20 is central for physiological signaling through innate immune receptors.
Cell Reports | 2014
Nieves Peltzer; Eva Rieser; Lucia Taraborrelli; Peter Draber; Maurice Darding; Barbara Pernaute; Yutaka Shimizu; Aida Sarr; Helena Draberova; Antonella Montinaro; Juan Pedro Martinez-Barbera; John Silke; Tristan A. Rodriguez; Henning Walczak
Linear ubiquitination is crucial for innate and adaptive immunity. The linear ubiquitin chain assembly complex (LUBAC), consisting of HOIL-1, HOIP, and SHARPIN, is the only known ubiquitin ligase that generates linear ubiquitin linkages. HOIP is the catalytically active LUBAC component. Here, we show that both constitutive and Tie2-Cre-driven HOIP deletion lead to aberrant endothelial cell death, resulting in defective vascularization and embryonic lethality at midgestation. Ablation of tumor necrosis factor receptor 1 (TNFR1) prevents cell death, vascularization defects, and death at midgestation. HOIP-deficient cells are more sensitive to death induction by both tumor necrosis factor (TNF) and lymphotoxin-α (LT-α), and aberrant complex-II formation is responsible for sensitization to TNFR1-mediated cell death in the absence of HOIP. Finally, we show that HOIPs catalytic activity is necessary for preventing TNF-induced cell death. Hence, LUBAC and its linear-ubiquitin-forming activity are required for maintaining vascular integrity during embryogenesis by preventing TNFR1-mediated endothelial cell death.
Cell Reports | 2016
Sebastian Kupka; Diego De Miguel; Peter Draber; Luigi Martino; Silvia Surinova; Katrin Rittinger; Henning Walczak
Summary Recruitment of the deubiquitinase CYLD to signaling complexes is mediated by its interaction with HOIP, the catalytically active component of the linear ubiquitin chain assembly complex (LUBAC). Here, we identify SPATA2 as a constitutive direct binding partner of HOIP that bridges the interaction between CYLD and HOIP. SPATA2 recruitment to TNFR1- and NOD2-signaling complexes is dependent on HOIP, and loss of SPATA2 abolishes CYLD recruitment. Deficiency in SPATA2 exerts limited effects on gene activation pathways but diminishes necroptosis induced by tumor necrosis factor (TNF), resembling loss of CYLD. In summary, we describe SPATA2 as a previously unrecognized factor in LUBAC-dependent signaling pathways that serves as an adaptor between HOIP and CYLD, thereby enabling recruitment of CYLD to signaling complexes.
Molecular Cell | 2017
Torsten Hartwig; Antonella Montinaro; Silvia von Karstedt; Alexandra Sevko; Silvia Surinova; Ankur Chakravarthy; Lucia Taraborrelli; Peter Draber; Elodie Lafont; Frederick Arce Vargas; Mona El-Bahrawy; Sergio A. Quezada; Henning Walczak
Summary Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is known for specifically killing cancer cells, whereas in resistant cancers, TRAIL/TRAIL-R can promote metastasis via Rac1 and PI3K. It remains unknown, however, whether and to what extent TRAIL/TRAIL-R signaling in cancer cells can affect the immune microenvironment. Here we show that TRAIL-triggered cytokine secretion from TRAIL-resistant cancer cells is FADD dependent and identify the TRAIL-induced secretome to drive monocyte polarization to myeloid-derived suppressor cells (MDSCs) and M2-like macrophages. TRAIL-R suppression in tumor cells impaired CCL2 production and diminished both lung MDSC presence and tumor growth. In accordance, the receptor of CCL2, CCR2, is required to facilitate increased MDSC presence and tumor growth. Finally, TRAIL and CCL2 are co-regulated with MDSC/M2 markers in lung adenocarcinoma patients. Collectively, endogenous TRAIL/TRAIL-R-mediated CCL2 secretion promotes accumulation of tumor-supportive immune cells in the cancer microenvironment, thereby revealing a tumor-supportive immune-modulatory role of the TRAIL/TRAIL-R system in cancer biology.
The EMBO Journal | 2017
Elodie Lafont; Chahrazade Kantari‐Mimoun; Peter Draber; Diego De Miguel; Torsten Hartwig; Matthias Reichert; Sebastian Kupka; Yutaka Shimizu; Lucia Taraborrelli; Maureen Spit; Martin R. Sprick; Henning Walczak
The linear ubiquitin chain assembly complex (LUBAC) is the only known E3 ubiquitin ligase which catalyses the generation of linear ubiquitin linkages de novo. LUBAC is a crucial component of various immune receptor signalling pathways. Here, we show that LUBAC forms part of the TRAIL‐R‐associated complex I as well as of the cytoplasmic TRAIL‐induced complex II. In both of these complexes, HOIP limits caspase‐8 activity and, consequently, apoptosis whilst being itself cleaved in a caspase‐8‐dependent manner. Yet, by limiting the formation of a RIPK1/RIPK3/MLKL‐containing complex, LUBAC also restricts TRAIL‐induced necroptosis. We identify RIPK1 and caspase‐8 as linearly ubiquitinated targets of LUBAC following TRAIL stimulation. Contrary to its role in preventing TRAIL‐induced RIPK1‐independent apoptosis, HOIP presence, but not its activity, is required for preventing necroptosis. By promoting recruitment of the IKK complex to complex I, LUBAC also promotes TRAIL‐induced activation of NF‐κB and, consequently, the production of cytokines, downstream of FADD, caspase‐8 and cIAP1/2. Hence, LUBAC controls the TRAIL signalling outcome from complex I and II, two platforms which both trigger cell death and gene activation.
Journal of Experimental Medicine | 2016
Julia Zinngrebe; Eva Rieser; Lucia Taraborrelli; Nieves Peltzer; Torsten Hartwig; Hongwei Ren; Ildiko Kovacs; Cornelia Endres; Peter Draber; Maurice Darding; Silvia von Karstedt; Johannes Lemke; Balazs Dome; Michael Bergmann; Brian J. Ferguson; Henning Walczak
LUBAC components interact with the TLR3 signaling cascade at different levels, thereby tightly controlling TLR3-mediated innate immunity.
FEBS Journal | 2016
Sebastian Kupka; Matthias Reichert; Peter Draber; Henning Walczak
Tumor necrosis factor (TNF) is a potent cytokine known for its involvement in inflammation, repression of tumorigenesis and activation of immune cells. Consequently, accurate regulation of the TNF signaling pathway is crucial for preventing the potent noxious effects of TNF. These pathological conditions include chronic inflammation, septic shock, cachexia and cancer. The TNF signaling cascade utilizes a complex network of post‐translational modifications to control the cellular response following its activation. Next to phosphorylation, the ubiquitination of signaling complex components is probably the most important modification. This process is mediated by a specialist class of enzymes, the ubiquitin ligases. Equally important is the class of dedicated ubiquitin‐specific proteases, the deubiquitinases. Together with ubiquitin binding proteins, this ubiquitination–deubiquitination system enables the dynamics of signaling complexes. In TNF signaling, these dynamics translate into the precise regulation of the induction of gene activation or cell death. Here, we review and discuss current knowledge of TNF signaling regulation by the ubiquitin system.
Cell Death and Disease | 2016
Alessandra Pescatore; Elio Esposito; Peter Draber; Henning Walczak; Matilde Valeria Ursini
Incontinentia Pigmenti (IP) is a rare X-linked disease characterized by early male lethality and multiple abnormalities in heterozygous females. IP is caused by NF-κB essential modulator (NEMO) mutations. The current mechanistic model suggests that NEMO functions as a crucial component mediating the recruitment of the IκB-kinase (IKK) complex to tumor necrosis factor receptor 1 (TNF-R1), thus allowing activation of the pro-survival NF-κB response. However, recent studies have suggested that gene activation and cell death inhibition are two independent activities of NEMO. Here we describe that cells expressing the IP-associated NEMO-A323P mutant had completely abrogated TNF-induced NF-κB activation, but retained partial antiapoptotic activity and exhibited high sensitivity to death by necroptosis. We found that robust caspase activation in NEMO-deficient cells is concomitant with RIPK3 recruitment to the apoptosis-mediating complex. In contrast, cells expressing the ubiquitin-binding mutant NEMO-A323P did not recruit RIPK3 to complex II, an event that prevented caspase activation. Hence NEMO, independently from NF-κB activation, represents per se a key component in the structural and functional dynamics of the different TNF-R1-induced complexes. Alteration of this process may result in differing cellular outcomes and, consequently, also pathological effects in IP patients with different NEMO mutations.
Nature Communications | 2018
Lucia Taraborrelli; Nieves Peltzer; Antonella Montinaro; Sebastian Kupka; Eva Rieser; Torsten Hartwig; Aida Sarr; Maurice Darding; Peter Draber; Tobias L. Haas; Ayse U. Akarca; Teresa Marafioti; Manolis Pasparakis; John Bertin; Peter J. Gough; Andreas Strasser; Martin Leverkus; John Silke; Henning Walczak
The linear ubiquitin chain assembly complex (LUBAC), composed of HOIP, HOIL-1 and SHARPIN, is required for optimal TNF-mediated gene activation and to prevent cell death induced by TNF. Here, we demonstrate that keratinocyte-specific deletion of HOIP or HOIL-1 (E-KO) results in severe dermatitis causing postnatal lethality. We provide genetic and pharmacological evidence that the postnatal lethal dermatitis in HoipE-KO and Hoil-1E-KO mice is caused by TNFR1-induced, caspase-8-mediated apoptosis that occurs independently of the kinase activity of RIPK1. In the absence of TNFR1, however, dermatitis develops in adulthood, triggered by RIPK1-kinase-activity-dependent apoptosis and necroptosis. Strikingly, TRAIL or CD95L can redundantly induce this disease-causing cell death, as combined loss of their respective receptors is required to prevent TNFR1-independent dermatitis. These findings may have implications for the treatment of patients with mutations that perturb linear ubiquitination and potentially also for patients with inflammation-associated disorders that are refractory to inhibition of TNF alone.TNF mediated inflammation is critical in autoimmune mediated pathology, however many patients are refractory to current anti-TNF therapeutics. Here the authors show induction of several death ligands, in addition to TNF is sufficient to cause fatal dermatitis in a LUBAC deficient murine model of disease.
Oncogene | 2015
M H Tuthill; Antonella Montinaro; Julia Zinngrebe; K Prieske; Peter Draber; S Prieske; T Newsom-Davis; S von Karstedt; J Graves; Henning Walczak