Antoni Benito
Autonomous University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antoni Benito.
Journal of Biotechnology | 1996
José Luis Corchero; Elisenda Viaplana; Antoni Benito; Antonio Villaverde
The VP1 protein (23 kDa) of the foot-and-mouth disease virus has been produced in MC1061 and BL21 E. coli strains as beta-galactosidase fusion proteins, joined to either the amino and/or the carboxy termini of the bacterial enzyme. In BL21, devoid of La protease, all the recombinant fusion proteins are produced at higher yields than in MC1061, and occur mainly as inclusion bodies. The fusion of VP1 at the carboxy terminus yields a protease-sensitive protein whose degradation releases a stable, enzymatically active polypeptide indistinguishable from the native beta-galactosidase. On the contrary, when the same viral domain is fused to the amino terminus, the resulting chimeric protein is resistant to proteolysis even in the soluble form. These data demonstrate that the position of the heterologous domain in beta-galactosidase fusion proteins would not be irrelevant since it can dramatically influence properties of biotechnological interest such as solubility and proteolytic resistance.
Structure | 2001
Albert Canals; Joan Pous; Alicia Guasch; Antoni Benito; Marc Ribó; Maria Vilanova; Miquel Coll
BACKGROUND Domain swapping has been proposed as a mechanism that explains the evolution from monomeric to oligomeric proteins. Bovine and human pancreatic ribonucleases are monomers with no biological properties other than their RNA cleavage ability. In contrast, the closely related bovine seminal ribonuclease is a natural domain-swapped dimer that has special biological properties, such as cytotoxicity to tumour cells. Several recombinant ribonuclease variants are domain-swapped dimers, but a structure of this kind has not yet been reported for the human enzyme. RESULTS The crystal structure at 2 A resolution of an engineered ribonuclease variant called PM8 reveals a new kind of domain-swapped dimer, based on the change of N-terminal domains between the two subunits. The swapping is fastened at both hinge peptides by the newly introduced Gln101, involved in two intermolecular hydrogen bonds and in a stacking interaction between residues of different chains. Two antiparallel salt bridges and water-mediated hydrogen bonds complete a new interface between subunits, while the hinge loop becomes organized in a 3(10) helix structure. CONCLUSIONS Proteins capable of domain swapping may quickly evolve toward an oligomeric form. As shown in the present structure, a single residue substitution reinforces the quaternary structure by forming an open interface. An evolutionary advantage derived from the new oligomeric state will fix the mutation and favour others, leading to a more extended complementary dimerization surface, until domain swapping is no longer necessary for dimer formation. The newly engineered swapped dimer reported here follows this hypothetical pathway for the rapid evolution of proteins.
Journal of Cell Science | 2007
M. Magdalena Rodriguez; Gerard Torrent; Montserrat Bosch; Fabienne Rayne; Jean-François Dubremetz; Marc Ribó; Antoni Benito; Maria Vilanova; Bruno Beaumelle
Onconase® is an RNase with a very specific property because it is selectively toxic to transformed cells. This toxin is thought to recognize cell surface receptors, and the protection conferred by metabolic poisons against Onconase toxicity indicated that this RNase relies on endocytic uptake to kill cells. Nevertheless, its internalization pathway has yet to be unraveled. We show here that Onconase enters cells using AP-2/clathrin-mediated endocytosis. It is then routed, together with transferrin, to the receptor recycling compartment. Increasing the Onconase concentration in this structure using tetanus toxin light chain expression enhanced Onconase toxicity, indicating that recycling endosomes are a key compartment for Onconase cytosolic delivery. This intracellular destination is specific to Onconase because other (and much less toxic) RNases follow the default pathway to late endosomes/lysosomes. Drugs neutralizing endosomal pH increased Onconase translocation efficiency from purified endosomes during cell-free translocation assays by preventing Onconase dissociation from its receptor at endosomal pH. Consistently, endosome neutralization enhanced Onconase toxicity up to 100-fold. Onconase translocation also required cytosolic ATP hydrolysis. This toxin therefore shows an unusual entry process that relies on clathrin-dependent endocytic uptake and then neutralization of low endosomal pH for efficient translocation from the endosomal lumen to the cytosol.
Biochemistry | 2004
Montserrat Bosch; Antoni Benito; Marc Ribó; Teresa Puig; Bruno Beaumelle; Maria Vilanova
Some members of the ribonuclease superfamily, such as Onconase, are cytotoxic to cancer cells. This is not the case for human pancreatic ribonuclease. This lack of cytotoxicity is probably a result of the inhibition exerted by the cytosolic ribonuclease inhibitor once the protein has reached the cytosol. Until now, all cytotoxic human pancreatic ribonuclease variants have been described as being resistant to the inhibitor. Here, we report on the characterization of a cytotoxic variant of human pancreatic ribonuclease which has an Arg triplet introduced onto one of its surface-exposed loops. Despite its sensitivity to the inhibitor, this variant, called PE5, was only 5-15 times less cytotoxic than Onconase. When it was taken up by cells, it was only observed within late compartments of the endocytic pathway, probably because the number of molecules transported to the cytosol was too small to allow their visualization. Nuclear import assays showed that the Arg triplet endows PE5 with a nuclear localization signal. In these experiments, PE5 was efficiently transported to the nucleus where it was initially localized in the nucleolus. Although the Arg introduction modified the net charge of the protein and somehow impaired recognition by the cytosolic inhibitor, control variants, which had the same number of charges or were not recognized by the inhibitor, were not toxic. We concluded that targeting a ribonuclease to the nucleus results in cytotoxicity. This effect is probably due to ribonuclease interference with rRNA processing and ribosome assembly within the nucleolus.
Journal of Molecular Recognition | 1999
Gabrielle Zeder-Lutz; Antoni Benito; M.H.V. Van Regenmortel
Whereas the concentration of a biomolecule simply refers to the amount of chemical substance per unit of volume, its active concentration refers to a relational parameter that has meaning only with respect to the molecules ability to interact specifically with one particular ligand. When proteins are studied in a biological context, it is the biologically active concentration that is relevant, and not the total concentration of correctly and incorrectly folded molecules. Using a biosensor instrument the concentration of active biomolecules in a preparation can be measured by injecting the preparation at different flow rates onto a sensor chip surface presenting a high concentration of a specific ligand. The method can be used under conditions of partial mass transport limitation and does not require a pre‐established standard curve. When the method was used to measure the active concentration of several recombinant proteins it was found that the active concentration was much lower than the nominal concentration determined by conventional methods. The active concentration also depended on the ligand used in the binding assay, reflecting the fact that active concentration can only be defined with respect to one specific probe. Such discrepancies in concentration values, if undetected, may lead to erroneous conclusions regarding the properties and behaviour of recombinant proteins tested in different assays. Copyright
Journal of Biotechnology | 1993
Antoni Benito; M. Vidal; Antonio Villaverde
Overexpression of pL-controlled foot-and-mouth disease virus recombinant proteins was studied in Escherichia coli RecA+ strains and in a recA mutant. Higher protein yield and extractable plasmid DNA amounts were found in wild type cells, in absence of detectable RecA proteolytic activity. Minor but still significant differences in pBR322 DNA amounts were also detected between RecA+ and its recA13 and lexA1 derivatives. These data should be seriously considered to select expression systems and to design production processes for recombinant proteins, specially if they are expected to be toxic for Escherichia coli cells.
Biotechnology and Bioengineering | 1999
Anna Arís; José Luis Corchero; Antoni Benito; Xavier Carbonell; Elisenda Viaplana; Antonio Villaverde
The production of several non‐related heterologous proteins in recombinant Escherichia coli cells promotes a significant transcription of recA and sfiA SOS DNA repair genes. The activation of the SOS system occurs when the expression of plasmid‐encoded genes is directed by the strong lambda lytic promoters, but not by IPTG‐controlled promoters either at 37 or at 42°C, and it is linked to an extensive degradation of the proteins after their synthesis. The triggering signal for the SOS response could be an important arrest of cell DNA replication observed within the first hour after the induction of recombinant gene expression. The stimulation of this DNA repair system can partially account for the toxicity exhibited by recombinant proteins on actively producing E. coli cells.
BMC Cancer | 2011
Jessica Castro; Marc Ribó; Susanna Navarro; Maria Victòria Nogués; Maria Vilanova; Antoni Benito
BackgroundRibonucleases are promising agents for use in anticancer therapy. Among the different ribonucleases described to be cytotoxic, a paradigmatic example is onconase which manifests cytotoxic and cytostatic effects, presents synergism with several kinds of anticancer drugs and is currently in phase II/III of its clinical trial as an anticancer drug against different types of cancer. The mechanism of cytotoxicity of PE5, a variant of human pancreatic ribonuclease carrying a nuclear localization signal, has been investigated and compared to that of onconase.MethodsCytotoxicity was measured by the MTT method and by the tripan blue exclusion assay. Apoptosis was assessed by flow cytometry, caspase enzymatic detection and confocal microscopy. Cell cycle phase analysis was performed by flow cytometry. The expression of different proteins was analyzed by western blot.ResultsWe show that the cytotoxicity of PE5 is produced through apoptosis, that it does not require the proapoptotic activity of p53 and is not prevented by the multiple drug resistance phenotype. We also show that PE5 and onconase induce cell death at the same extent although the latter is also able to arrest the cell growth. We have compared the cytotoxic effects of both ribonucleases in the NCI/ADR-RES cell line by measuring their effects on the cell cycle, on the activation of different caspases and on the expression of different apoptosis- and cell cycle-related proteins. PE5 increases the number of cells in S and G2/M cell cycle phases, which is accompanied by the increased expression of cyclin E and p21WAF1/CIP1 together with the underphosphorylation of p46 forms of JNK. Citotoxicity of onconase in this cell line does not alter the cell cycle phase distribution and it is accompanied by a decreased expression of XIAPConclusionsWe conclude that PE5 kills the cells through apoptosis associated with the p21WAF1/CIP1 induction and the inactivation of JNK. This mechanism is significantly different from that found for onconase.
Gene | 1996
Antonio Villaverde; Jordi X. Feliu; Richard P. Harbottle; Antoni Benito; Charles Coutelle
The cell-binding abilities of a recombinant, RGD-containing peptide from foot-and-mouth disease virus (FMDV) have been characterized in HeLa and BHK cells. This peptide represents the aa sequence of the solvent-exposed G-H loop of protein VP1 which is involved in cell recognition and infection. The efficiency of the viral motif in promoting cell attachment and spreading is comparable to that shown by fibronectin or vitronectin. Cell binding is inhibited by a monoclonal antibody directed against a viral, RGD-involving B-cell epitope and also by sera against vitronectin (alpha V beta 3/beta 5) and fibronectin (alpha 5 beta 1) receptors. In addition, a synthetic RGD peptide, which is a ligand for both integrins, prevents the cell binding mediated by the FMDV domain. These data demonstrate that the FMDV RGD motif is a potent ligand for cell-receptor integrins and sufficient to promote cell attachment to susceptible cells mainly through the vitronectin receptor.
Biotechnology and Bioengineering | 1998
Antonio Villaverde; Jordi X. Feliu; Anna Arís; Richard P. Harbottle; Antoni Benito; Charles Coutelle
The G-H loop of foot-and-mouth disease virus is a disordered protrusion of the VP1 protein exposed on the virion surface. This short stretch includes an arginine-glycine-aspartic acid tripeptide, a recognized integrin-binding motif, which is responsible for cell attachment and infection. Eight copies of a peptide reproducing the amino acid sequence of this FMDV ligand have been displayed in solvent-exposed regions on an enzymatically active recombinant beta-galactosidase. This viral peptide segment enables the chimeric enzyme to bind mammalian cell lines with different efficiencies, probably depending on the number of suitable cell receptors present on each of them. Moreover, it also promotes the internalization of the attached enzyme, which is transiently active inside the cells. These results suggest further exploration of the potential use of short adhesion peptides of viral origin as cell attachment tags to direct the targeted delivery of both genes and enzymes, instead of whole, infectious viruses.