Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antoni P. A. Hendrickx is active.

Publication


Featured researches published by Antoni P. A. Hendrickx.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein

Matti Kankainen; Lars Paulin; Soile Tynkkynen; Ingemar von Ossowski; Justus Reunanen; Pasi Partanen; Reetta Satokari; Satu Vesterlund; Antoni P. A. Hendrickx; Sarah Lebeer; Sigrid De Keersmaecker; Jos Vanderleyden; Tuula Hämäläinen; Suvi Laukkanen; Noora Salovuori; Jarmo Ritari; Edward Alatalo; Riitta Korpela; Tiina Mattila-Sandholm; Anna Lassig; Katja Hatakka; Katri T. Kinnunen; Heli Karjalainen; Maija Saxelin; Kati Laakso; Anu Surakka; Airi Palva; Tuomas Salusjärvi; Petri Auvinen; Willem M. de Vos

To unravel the biological function of the widely used probiotic bacterium Lactobacillus rhamnosus GG, we compared its 3.0-Mbp genome sequence with the similarly sized genome of L. rhamnosus LC705, an adjunct starter culture exhibiting reduced binding to mucus. Both genomes demonstrated high sequence identity and synteny. However, for both strains, genomic islands, 5 in GG and 4 in LC705, punctuated the colinearity. A significant number of strain-specific genes were predicted in these islands (80 in GG and 72 in LC705). The GG-specific islands included genes coding for bacteriophage components, sugar metabolism and transport, and exopolysaccharide biosynthesis. One island only found in L. rhamnosus GG contained genes for 3 secreted LPXTG-like pilins (spaCBA) and a pilin-dedicated sortase. Using anti-SpaC antibodies, the physical presence of cell wall-bound pili was confirmed by immunoblotting. Immunogold electron microscopy showed that the SpaC pilin is located at the pilus tip but also sporadically throughout the structure. Moreover, the adherence of strain GG to human intestinal mucus was blocked by SpaC antiserum and abolished in a mutant carrying an inactivated spaC gene. Similarly, binding to mucus was demonstrated for the purified SpaC protein. We conclude that the presence of SpaC is essential for the mucus interaction of L. rhamnosus GG and likely explains its ability to persist in the human intestinal tract longer than LC705 during an intervention trial. The presence of mucus-binding pili on the surface of a nonpathogenic Gram-positive bacterial strain reveals a previously undescribed mechanism for the interaction of selected probiotic lactobacilli with host tissues.


Nature Reviews Microbiology | 2011

Architects at the bacterial surface — sortases and the assembly of pili with isopeptide bonds

Antoni P. A. Hendrickx; Jonathan M. Budzik; So-Young Oh; Olaf Schneewind

The cell wall envelope of Gram-positive bacteria can be thought of as a surface organelle for the assembly of macromolecular structures that enable the unique lifestyle of each microorganism. Sortases — enzymes that cleave the sorting signals of secreted proteins to form isopeptide (amide) bonds between the secreted proteins and peptidoglycan or polypeptides — function as the principal architects of the bacterial surface. Acting alone or with other sortase enzymes, sortase construction leads to the anchoring of surface proteins at specific sites in the envelope or to the assembly of pili, which are fibrous structures formed from many protein subunits. The catalysis of intermolecular isopeptide bonds between pilin subunits is intertwined with the assembly of intramolecular isopeptide bonds within pilin subunits. Together, these isopeptide bonds endow these sortase products with adhesive properties and resistance to host proteases.


BMC Genomics | 2010

Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island

Willem van Schaik; Janetta Top; David R. Riley; Jos Boekhorst; Joyce E. P. Vrijenhoek; Claudia M. E. Schapendonk; Antoni P. A. Hendrickx; Isaac J. Nijman; Marc J. M. Bonten; Hervé Tettelin; Rob J. L. Willems

BackgroundThe Gram-positive bacterium Enterococcus faecium is an important cause of nosocomial infections in immunocompromized patients.ResultsWe present a pyrosequencing-based comparative genome analysis of seven E. faecium strains that were isolated from various sources. In the genomes of clinical isolates several antibiotic resistance genes were identified, including the vanA transposon that confers resistance to vancomycin in two strains. A functional comparison between E. faecium and the related opportunistic pathogen E. faecalis based on differences in the presence of protein families, revealed divergence in plant carbohydrate metabolic pathways and oxidative stress defense mechanisms. The E. faecium pan-genome was estimated to be essentially unlimited in size, indicating that E. faecium can efficiently acquire and incorporate exogenous DNA in its gene pool. One of the most prominent sources of genomic diversity consists of bacteriophages that have integrated in the genome. The CRISPR-Cas system, which contributes to immunity against bacteriophage infection in prokaryotes, is not present in the sequenced strains. Three sequenced isolates carry the esp gene, which is involved in urinary tract infections and biofilm formation. The esp gene is located on a large pathogenicity island (PAI), which is between 64 and 104 kb in size. Conjugation experiments showed that the entire esp PAI can be transferred horizontally and inserts in a site-specific manner.ConclusionsGenes involved in environmental persistence, colonization and virulence can easily be aquired by E. faecium. This will make the development of successful treatment strategies targeted against this organism a challenge for years to come.


PLOS Pathogens | 2011

Preventing Staphylococcus aureus sepsis through the inhibition of its agglutination in blood.

Molly McAdow; Hwan Keun Kim; Andrea C. DeDent; Antoni P. A. Hendrickx; Olaf Schneewind; Dominique Missiakas

Staphylococcus aureus infection is a frequent cause of sepsis in humans, a disease associated with high mortality and without specific intervention. When suspended in human or animal plasma, staphylococci are known to agglutinate, however the bacterial factors responsible for agglutination and their possible contribution to disease pathogenesis have not yet been revealed. Using a mouse model for S. aureus sepsis, we report here that staphylococcal agglutination in blood was associated with a lethal outcome of this disease. Three secreted products of staphylococci - coagulase (Coa), von Willebrand factor binding protein (vWbp) and clumping factor (ClfA) – were required for agglutination. Coa and vWbp activate prothrombin to cleave fibrinogen, whereas ClfA allowed staphylococci to associate with the resulting fibrin cables. All three virulence genes promoted the formation of thromboembolic lesions in heart tissues. S. aureus agglutination could be disrupted and the lethal outcome of sepsis could be prevented by combining dabigatran-etexilate treatment, which blocked Coa and vWbp activity, with antibodies specific for ClfA. Together these results suggest that the combined administration of direct thrombin inhibitors and ClfA-antibodies that block S. aureus agglutination with fibrin may be useful for the prevention of staphylococcal sepsis in humans.


Applied and Environmental Microbiology | 2012

Characterization of the SpaCBA Pilus Fibers in the Probiotic Lactobacillus rhamnosus GG

Justus Reunanen; Ingemar von Ossowski; Antoni P. A. Hendrickx; Airi Palva; Willem M. de Vos

ABSTRACT Lactobacillus rhamnosus GG is a human intestinal isolate that has been studied intensively because of its probiotic properties. We have previously shown that L. rhamnosus GG produces proteinaceous pili that earlier had been observed only in Gram-positive pathogens (M. Kankainen et al., Proc. Natl. Acad. Sci. U. S. A. 106:17193–17198, 2009). These pili were found to be encoded by the spaCBA gene cluster, and the pilus-associated SpaC pilin was shown to confer on the cells a mucus-binding ability. In addition to the spaCBA cluster, another putative pilus cluster, spaFED, was predicted from the L. rhamnosus GG genome sequence. Herein, we show that only SpaCBA pili are produced by L. rhamnosus, and we describe a detailed analysis of cell wall-associated and affinity-purified SpaCBA pili by Western blotting and immunogold electron microscopy. Our results indicate that SpaCBA pili are heterotrimeric protrusions with a SpaA subunit as the shaft-forming major pilin. Only a few SpaB subunits could be observed in pilus fibers. Instead, SpaB pilins were found at pilus bases, as assessed by immunogold double labeling of thin sections of cells, suggesting that SpaB is involved in the termination of pilus assembly. The SpaC adhesin was present along the whole pilus length at numbers nearly equaling those of SpaA. The relative amount and uniform distribution of SpaC within pili not only makes it possible to exert both long-distance and intimate contact with host tissue but also provides mucus-binding strength, which explains the prolonged intestinal residency times observed for L. rhamnosus GG compared to that of nonpiliated lactobacilli.


Microbiology | 2008

Expression of two distinct types of pili by a hospital- acquired Enterococcus faecium isolate

Antoni P. A. Hendrickx; Marc J. M. Bonten; Miranda van Luit-Asbroek; Claudia M. E. Schapendonk; A.H. Kragten; Rob J. L. Willems

Surface filamentous structures designated pili, and implicated in virulence, have been found on the surfaces of several Gram-positive pathogens. This work describes the conditional expression of two phenotypically distinct pilus-like structures, designated PilA and PilB, on the surface of a hospital-adapted Enterococcus faecium bloodstream isolate. E. faecium is an emerging Gram-positive opportunistic pathogen that can cause severe disease, particularly in immunocompromised patients. Expression of PilA- and PilB-type pili was analysed during different phases of growth in broth culture. During growth, PilA and PilB pilin subunits were expressed around the cross-wall in early-exponential-phase cells. Polymerization and migration of short PilB-type pili towards the poles occurred in cells from the exponential phase and long polymerized pili were expressed at the poles of cells grown to stationary phase. In contrast, PilA-type pili were not expressed in broth culture, but only when cells were grown on solid media. Furthermore, surface expression of the PilA- and PilB-type pili was regulated in a temperature-dependent manner, as polymerization of two distinct types of pili at the surface only occurred when cells were grown at 37 degrees C; no pili were observed on cells grown at 21 degrees C. Hospital-aquired E. faecium isolates were specifically enriched in pilin gene clusters, suggesting that conditional expression of pili may contribute to E. faecium pathogenesis.


Trends in Microbiology | 2009

LPxTG surface proteins of enterococci

Antoni P. A. Hendrickx; Rob J. L. Willems; Marc J. M. Bonten; Willem van Schaik

Enterococci have become an important cause of nosocomial infections since the late 1980s. Several surface proteins have been implicated in contributing to infections caused by Enterococcus faecalis and Enterococcus faecium. Understanding the in vivo function of enterococcal surface proteins, particularly their role in directing interactions with the host during infection, is essential to explain the success of enterococci as nosocomial pathogens. Here we review current knowledge of enterococcal LPxTG surface proteins, including aggregation substance, enterococcal surface protein, three collagen-binding microbial surface components that recognize adhesive matrix molecules (Ace, Acm, Scm) and pili (Ebp, PilA and PilB), their interactions with host molecules and their role in pathogenicity and biofilm development.


Journal of Bacteriology | 2007

Five Genes Encoding Surface-Exposed LPXTG Proteins Are Enriched in Hospital-Adapted Enterococcus faecium Clonal Complex 17 Isolates

Antoni P. A. Hendrickx; Willem J. B. van Wamel; George Posthuma; Marc J. M. Bonten; Rob J. L. Willems

Most Enterococcus faecium isolates associated with hospital outbreaks and invasive infections belong to a distinct genetic subpopulation called clonal complex 17 (CC17). It has been postulated that the genetic evolution of CC17 involves the acquisition of various genes involved in antibiotic resistance, metabolic pathways, and virulence. To gain insight into additional genes that may have favored the rapid emergence of this nosocomial pathogen, we aimed to identify surface-exposed LPXTG cell wall-anchored proteins (CWAPs) specifically enriched in CC17 E. faecium. Using PCR and Southern and dot blot hybridizations, 131 E. faecium isolates (40 CC17 and 91 non-CC17) were screened for the presence of 22 putative CWAP genes identified from the E. faecium TX0016 genome. Five genes encoding LPXTG surface proteins were specifically enriched in E. faecium CC17 isolates. These five LPXTG surface protein genes were found in 28 to 40 (70 to 100%) of CC17 and in only 7 to 24 (8 to 26%) of non-CC17 isolates (P < 0.05). Three of these CWAP genes clustered together on the E. faecium TX0016 genome, which may comprise a novel enterococcal pathogenicity island covering E. faecium contig 609. Expression at the mRNA level was demonstrated, and immunotransmission electron microscopy revealed an association of the five LPXTG surface proteins with the cell wall. Minimal spanning tree analysis based on the presence and absence of 22 CWAP genes revealed grouping of all 40 CC17 strains together with 18 hospital-derived but evolutionary unrelated non-CC17 isolates in a distinct CWAP-enriched cluster, suggesting horizontal transfer of CWAP genes and a role of these CWAPs in hospital adaptation.


Infection and Immunity | 2007

Growth condition-dependent Esp expression by Enterococcus faecium affects initial adherence and biofilm formation.

Willem J. B. van Wamel; Antoni P. A. Hendrickx; Marc J. M. Bonten; Janetta Top; George Posthuma; Rob J. L. Willems

ABSTRACT A genetic subpopulation of Enterococcus faecium, called clonal complex 17 (CC-17), is strongly associated with hospital outbreaks and invasive infections. Most CC-17 strains contain a putative pathogenicity island encoding the E. faecium variant of enterococcal surface protein (Esp). Western blotting, flow cytometric analyses, and electron microscopy showed that Esp is expressed and exposed on the surface of E. faecium, though Esp expression and surface exposure are highly varied among different strains. Furthermore, Esp expression depends on growth conditions like temperature and anaerobioses. When grown at 37°C, five of six esp-positive E. faecium strains showed significantly increased levels of surface-exposed Esp compared to bacteria grown at 21°C, which was confirmed at the transcriptional level by real-time PCR. In addition, a significant increase in surface-exposed Esp was found in half of these strains when grown at 37°C under anaerobic conditions compared to the level in bacteria grown under aerobic conditions. Finally, amounts of surface-exposed Esp correlated with initial adherence to polystyrene (R2 = 0.7146) and biofilm formation (R2 = 0.7535). Polystyrene adherence was competitively inhibited by soluble recombinant N-terminal Esp. This study demonstrates that Esp expression on the surface of E. faecium (i) varies consistently between strains, (ii) is growth condition dependent, and (iii) is quantitatively correlated with initial adherence and biofilm formation. These data indicate that E. faecium senses and responds to changing environmental conditions, which might play a role in the early stages of infection when bacteria transit from oxygen-rich conditions at room temperature to anaerobic conditions at body temperature. In addition, variation of surface exposure may explain the contrasting findings reported on the role of Esp in biofilm formation.


Infection and Immunity | 2009

SgrA, a Nidogen-Binding LPXTG Surface Adhesin Implicated in Biofilm Formation, and EcbA, a Collagen Binding MSCRAMM, Are Two Novel Adhesins of Hospital-Acquired Enterococcus faecium

Antoni P. A. Hendrickx; Miranda van Luit-Asbroek; Claudia M. E. Schapendonk; Willem J. B. van Wamel; Johanna C. Braat; Lucas M. Wijnands; Marc J. M. Bonten; Rob J. L. Willems

ABSTRACT Hospital-acquired Enterococcus faecium isolates responsible for nosocomial outbreaks and invasive infections are enriched in the orf2351 and orf2430 genes, encoding the SgrA and EcbA LPXTG-like cell wall-anchored proteins, respectively. These two surface proteins were characterized to gain insight into their function, since they may have favored the rapid emergence of this nosocomial pathogen. We are the first to identify a surface adhesin among bacteria (SgrA) that binds to the extracellular matrix molecules nidogen 1 and nidogen 2, which are constituents of the basal lamina. EcbA is a novel E. faecium MSCRAMM (microbial surface component recognizing adhesive matrix molecules) that binds to collagen type V. In addition, both SgrA and EcbA bound to fibrinogen; however, SgrA targeted the alpha and beta chains, whereas EcbA bound to the gamma chain of fibrinogen. An E. faecium sgrA insertion mutant displayed reduced binding to both nidogens and fibrinogen. SgrA did not mediate binding of E. faecium cells to biotic materials, such as human intestinal epithelial cells, human bladder cells, and kidney cells, while this LPXTG surface adhesin is implicated in E. faecium biofilm formation. The acm and scm genes, encoding two other E. faecium MSCRAMMs, were expressed at the mRNA level together with sgrA during all phases of growth, whereas ecbA was expressed only in exponential and late exponential phase, suggesting orchestrated expression of these adhesins. Expression of these surface proteins, which bind to extracellular matrix proteins and are involved in biofilm formation (SgrA), may contribute to the pathogenesis of hospital-acquired E. faecium infections.

Collaboration


Dive into the Antoni P. A. Hendrickx's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge