Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rob J. L. Willems is active.

Publication


Featured researches published by Rob J. L. Willems.


Emerging Infectious Diseases | 2005

Global spread of vancomycin-resistant Enterococcus faecium from distinct nosocomial genetic complex.

Rob J. L. Willems; Janetta Top; Marga van Santen; D. Ashley Robinson; Teresa M. Coque; Fernando Baquero; Hajo Grundmann; Marc J. M. Bonten

Vancomycin-resistant enterococci (VRE) have caused hospital outbreaks worldwide, and the vancomycin-resistance gene (vanA) has crossed genus boundaries to methicillin-resistant Staphylococcus aureus. Spread of VRE, therefore, represents an immediate threat for patient care and creates a reservoir of mobile resistance genes for other, more virulent pathogens. Evolutionary genetics, population structure, and geographic distribution of 411 VRE and vancomycin-susceptible Enterococcus faecium isolates, recovered from human and nonhuman sources and community and hospital reservoirs in 5 continents, identified a genetic lineage of E. faecium (complex-17) that has spread globally. This lineage is characterized by 1) ampicillin resistance, 2) a pathogenicity island, and 3) an association with hospital outbreaks. Complex-17 is an example of cumulative evolutionary processes that improved the relative fitness of bacteria in hospital environments. Preventing further spread of this epidemic E. faecium subpopulation is critical, and efforts should focus on the early disclosure of ampicillin-resistant complex-17 strains.


Journal of Clinical Microbiology | 2002

Multilocus Sequence Typing Scheme for Enterococcus faecium

Wieger L. Homan; David Tribe; Simone Poznanski; Mei Li; Geoff Hogg; Emile Spalburg; Jan D. A. van Embden; Rob J. L. Willems

ABSTRACT A multilocus sequence typing (MLST) scheme has been developed for Enterococcus faecium. Internal fragments from seven housekeeping genes of 123 epidemiologically unlinked isolates from humans and livestock and 16 human-derived isolates from several outbreaks in the United States, the United Kingdom, Australia, and The Netherlands were analyzed. A total of 62 sequence types were detected in vancomycin-sensitive E. faecium (VSEF) and vancomycin-resistant E. faecium (VREF) isolates. VSEF isolates were genetically more diverse than VREF isolates. Both VSEF and VREF isolates clustered in host-specific lineages that were similar to the host-specific clustering obtained by amplified fragment length polymorphism analysis. Outbreak isolates from hospitalized humans clustered in a subgroup that was defined by the presence of a unique allele from the housekeeping gene purK and the surface protein gene esp. The MLST results suggest that epidemic lineages of E. faecium emerged recently worldwide, while genetic variation in both VREF and VSEF was created by longer-term recombination. The results show that MLST of E. faecium provides an excellent tool for isolate characterization and long-term epidemiologic analysis.


Lancet Infectious Diseases | 2001

Vancomycin-resistant enterococci: why are they here, and where do they come from?

Marc J. M. Bonten; Rob J. L. Willems; Robert A. Weinstein

Vancomcyin-resistant enterococci (VRE) have emerged as nosocomial pathogens in the past 10 years, causing epidemiological controversy. In the USA, colonisation with VRE is endemic in many hospitals and increasingly causes infection, but colonisation is absent in healthy people. In Europe, outbreaks still happen sporadically, usually with few serious infections, but colonisation seems to be endemic in healthy people and farm animals. Vancomycin use has been much higher in the USA, where emergence of ampicillin-resistant enterococci preceded emergence of VRE, making them very susceptible to the selective effects of antibiotics. In Europe, avoparcin, a vancomycin-like glycopeptide, has been widely used in the agricultural industry, explaining the community reservoir in European animals. Avoparcin has not been used in the USA, which is consistent with the absence of colonisation in healthy people. From the European animal reservoir, VRE and resistance genes have spread to healthy human beings and hospitalised patients. However, certain genogroups of enterococci in both continents seem to be more capable of causing hospital outbreaks, perhaps because of the presence of a specific virulence factor, the variant esp gene. By contrast with the evidence of a direct link between European animal and human reservoirs, the origin of American resistance genes remains to be established. Considering the spread of antibiotic-resistant bacteria and resistance genes, the emergence of VRE has emphasised the non-existence of boundaries between hospitals, between people and animals, between countries, and probably between continents.


The Lancet | 2001

Variant esp gene as a marker of a distinct genetic lineage of vancomycin-resistant Enterococcus faecium spreading in hospitals

Rob J. L. Willems; Wieger L. Homan; Janetta Top; Marga G. van Santen-Verheuvel; David Tribe; Xenia Manzioros; Carlo A. J. M. Gaillard; Christina M. J. E. Vandenbroucke-Grauls; Ellen M. Mascini; Eric van Kregten; Jan D. A. van Embden; Marc J. M. Bonten

In the USA, vancomycin-resistant Enterococcus faecium (VREF) is endemic in hospitals, despite lack of carriage among healthy individuals. In Europe, however, hospital outbreaks are rare, but VREF carriage among healthy individuals and livestock is common. We used amplified fragment-length polymorphism analysis to genotype 120 VREF isolates associated with hospital outbreaks and 45 non-epidemic isolates from the USA, Europe, and Australia. We also looked for the esp virulence gene in these isolates and in 98 VREF from animals. A specific E. faecium subpopulation genetically distinct from non-epidemic VREF isolates was found to be the cause of the hospital epidemics in all three continents. This subpopulation contained a variant of the esp gene that was absent in all non-epidemic and animal isolates. Identification of the variant esp gene will be important in guiding infection-control strategies, and the Esp protein could be a new target for antibacterial therapy.


Journal of Clinical Microbiology | 2006

Multilocus Sequence Typing Scheme for Enterococcus faecalis Reveals Hospital-Adapted Genetic Complexes in a Background of High Rates of Recombination

Patricia Ruiz-Garbajosa; Marc J. M. Bonten; D. Ashley Robinson; Janetta Top; Sreedhar R. Nallapareddy; Carmen Torres; Teresa M. Coque; Rafael Cantón; Fernando Baquero; Barbara E. Murray; Rosa del Campo; Rob J. L. Willems

ABSTRACT A multilocus sequence typing (MLST) scheme based on seven housekeeping genes was used to investigate the epidemiology and population structure of Enterococcus faecalis. MLST of 110 isolates from different sources and geographic locations revealed 55 different sequence types that grouped into four major clonal complexes (CC2, CC9, CC10, and CC21) by use of eBURST. Two of these clonal complexes, CC2 and CC9, are particularly fit in the hospital environment, as CC2 includes the previously described BVE clonal complex identified by an alternative MLST scheme and CC9 includes exclusively isolates from hospitalized patients. Identical alleles were found in genetically diverse isolates with no linkage disequilibrium, while the different MLST loci gave incongruent phylogenetic trees. This demonstrates that recombination is an important mechanism driving genetic variation in E. faecalis and suggests an epidemic population structure for E. faecalis. Our novel MLST scheme provides an excellent tool for investigating local and short-term epidemiology as well as global epidemiology, population structure, and genetic evolution of E. faecalis.


Journal of Clinical Microbiology | 2003

Comparative Genotyping of Campylobacter jejuni by Amplified Fragment Length Polymorphism, Multilocus Sequence Typing, and Short Repeat Sequencing: Strain Diversity, Host Range, and Recombination

Leo M. Schouls; Sanne Reulen; Birgitta Duim; Jaap A. Wagenaar; Rob J. L. Willems; Kate E. Dingle; Frances M. Colles; Jan D. A. van Embden

ABSTRACT Three molecular typing methods were used to study the relationships among 184 Campylobacter strains isolated from humans, cattle, and chickens. All strains were genotyped by amplified fragment length polymorphism (AFLP) analysis, multilocus sequence typing (MLST), and sequence analysis of a genomic region with short tandem repeats designated clustered regularly interspaced short palindromic repeats (CRISPRs). MLST and AFLP analysis yielded more than 100 different profiles and patterns, respectively. These multiple-locus typing methods resulted in similar genetic clustering, indicating that both are useful in disclosing genetic relationships between Campylobacter jejuni isolates. Group separation analysis of the AFLP analysis and MLST data revealed an unexpected association between cattle and human strains, suggesting a common source of infection. Analysis of the polymorphic CRISPR region carrying short repeats allowed about two-thirds of the typeable strains to be distinguished, similar to AFLP analysis and MLST. The three methods proved to be equally powerful in identifying strains from outbreaks of human campylobacteriosis. Analysis of the MLST data showed that intra- and interspecies recombination occurs frequently and that the role of recombination in sequence variation is 50 times greater than that of mutation. Examination of strains cultured from cecum swabs revealed that individual chickens harbored multiple Campylobacter strain types and that some genotypes were found in more than one chicken. We conclude that typing of Campylobacter strains is useful for identification of outbreaks but is probably not useful for source tracing and global epidemiology because of carriage of strains of multiple types and an extremely high diversity of strains in animals.


Lancet Infectious Diseases | 2014

Interventions to reduce colonisation and transmission of antimicrobial-resistant bacteria in intensive care units: an interrupted time series study and cluster randomised trial.

Lennie P. G. Derde; Ben Cooper; Herman Goossens; Surbhi Malhotra-Kumar; Rob J. L. Willems; Marek Gniadkowski; Waleria Hryniewicz; Joanna Empel; Mirjam J. D. Dautzenberg; Djillali Annane; Irene Aragão; Annie Chalfine; Uga Dumpis; Francisco J. Esteves; Helen Giamarellou; Igor Muzlovič; Giuseppe Nardi; George Petrikkos; Viktorija Tomič; Antonio Torres Martí; Pascal Stammet; Christian Brun-Buisson; Marc J. M. Bonten

Summary Background Intensive care units (ICUs) are high-risk areas for transmission of antimicrobial-resistant bacteria, but no controlled study has tested the effect of rapid screening and isolation of carriers on transmission in settings with best-standard precautions. We assessed interventions to reduce colonisation and transmission of antimicrobial-resistant bacteria in European ICUs. Methods We did this study in three phases at 13 ICUs. After a 6 month baseline period (phase 1), we did an interrupted time series study of universal chlorhexidine body-washing combined with hand hygiene improvement for 6 months (phase 2), followed by a 12–15 month cluster randomised trial (phase 3). ICUs were randomly assigned by computer generated randomisation schedule to either conventional screening (chromogenic screening for meticillin-resistant Staphylococcus aureus [MRSA] and vancomycin-resistant enterococci [VRE]) or rapid screening (PCR testing for MRSA and VRE and chromogenic screening for highly resistant Enterobacteriaceae [HRE]); with contact precautions for identified carriers. The primary outcome was acquisition of resistant bacteria per 100 patient-days at risk, for which we calculated step changes and changes in trends after the introduction of each intervention. We assessed acquisition by microbiological surveillance and analysed it with a multilevel Poisson segmented regression model. We compared screening groups with a likelihood ratio test that combined step changes and changes to trend. This study is registered with ClinicalTrials.gov, number NCT00976638. Findings Seven ICUs were assigned to rapid screening and six to conventional screening. Mean hand hygiene compliance improved from 52% in phase 1 to 69% in phase 2, and 77% in phase 3. Median proportions of patients receiving chlorhexidine body-washing increased from 0% to 100% at the start of phase 2. For trends in acquisition of antimicrobial-resistant bacteria, weekly incidence rate ratio (IRR) was 0·976 (0·954–0·999) for phase 2 and 1·015 (0·998–1·032) for phase 3. For step changes, weekly IRR was 0·955 (0·676–1·348) for phase 2 and 0·634 (0·349–1·153) for phase 3. The decrease in trend in phase 2 was largely caused by changes in acquisition of MRSA (weekly IRR 0·925, 95% CI 0·890–0·962). Acquisition was lower in the conventional screening group than in the rapid screening group, but did not differ significantly (p=0·06). Interpretation Improved hand hygiene plus unit-wide chlorhexidine body-washing reduced acquisition of antimicrobial-resistant bacteria, particularly MRSA. In the context of a sustained high level of compliance to hand hygiene and chlorhexidine bathings, screening and isolation of carriers do not reduce acquisition rates of multidrug-resistant bacteria, whether or not screening is done with rapid testing or conventional testing. Funding European Commission.


Journal of Bacteriology | 2004

A Novel Putative Enterococcal Pathogenicity Island Linked to the esp Virulence Gene of Enterococcus faecium and Associated with Epidemicity

Helen L. Leavis; Janetta Top; Nathan Shankar; Katrine Borgen; Marc J. M. Bonten; Jan D. A. van Embden; Rob J. L. Willems

Enterococcus faecalis harbors a virulence-associated surface protein encoded by the esp gene. This gene has been shown to be part of a 150-kb putative pathogenicity island. A gene similar to esp has recently been found in Enterococcus faecium isolates recovered from hospitalized patients. In the present study we analyzed the polymorphism in the esp gene of E. faecium, and we investigated the association of esp with neighboring chromosomal genes. The esp gene showed considerable sequence heterogeneity in the regions encoding the nonrepeat N- and C-terminal domains of the Esp protein as well as differences in the number of repeats. DNA sequencing of chromosomal regions flanking the esp gene of E. faecium revealed seven open reading frames, representing putative genes implicated in virulence, regulation of transcription, and antibiotic resistance. These flanking regions were invariably associated with the presence or absence of the esp gene in E. faecium, indicating that esp in E. faecium is part of a distinct genetic element. Because of the presence of virulence genes in this gene cluster, the lower G+C content relative to that of the genome, and the presence of esp in E. faecium isolates associated with nosocomial outbreaks and clinically documented infections, we conclude that this genetic element constitutes a putative pathogenicity island, the first one described in E. faecium. Except for the presence of esp and araC, this pathogenicity island is completely different from the esp-containing pathogenicity island previously disclosed in E. faecalis.


Fems Immunology and Medical Microbiology | 2008

Emergence of CC17 Enterococcus faecium: from commensal to hospital‐adapted pathogen

Janetta Top; Rob J. L. Willems; Marc J. M. Bonten

For many years, Enterococcus faecium was considered to be a commensal of the digestive tract, which only sporadically caused opportunistic infections in severely ill patients. Over the last two decades, vancomycin-resistant E. faecium (VREF) has emerged worldwide as an important cause of nosocomial infections, especially in immunocompromised patients. The global Vancomycin-resistant enterococci (VRE) epidemic was preceded by the emergence of ampicillin-resistant E. faecium (AREfm) in the United States in the early 1980s, followed by the rapid emergence of VRE in the 1990s. A similar increase of VRE may occur in countries with still low levels of VRE in hospitals (such as The Netherlands), but increasing incidence of AREfm infections. Molecular epidemiological studies of both human- and animal-derived E. faecium isolates using multilocus sequence typing revealed the existence of host-specific genogroups, including a specific genetic lineage designated CC17, associated with hospital-related isolates. These strains were characterized by ampicillin and quinolone resistance. In addition, the majority of these CC17 isolates contain over hundred hospital-clade-specific genes, including mobile elements, phage genes and plasmid sequences, hypothetical and membrane proteins and antibiotic and regulatory genes and a putative pathogenicity island including the esp gene.


The Journal of Infectious Diseases | 2000

Host Specificity of Vancomycin-Resistant Enterococcus faecium

Rob J. L. Willems; Janetta Top; Nicole Braak van den; Alex van Belkum; Hubert P. Endtz; Dik Mevius; Ellen E. Stobberingh; Anthony E. van den Bogaard; Jan D. A. van Embden

Amplified-fragment length polymorphism (AFLP) analysis was used to investigate the genetic relationships among 255 vancomycin-resistant Enterococcus faecium (VREF) strains isolated from hospitalized patients, nonhospitalized persons, and various animal sources. Four major AFLP genogroups (A-D) were discriminated. The strains of each taxon shared >/=65% of the restriction fragments. Most isolates recovered from nonhospitalized persons (75%) were grouped together with all pig isolates in genogroup A. Most isolates from hospitalized patients (84%), a subset of veal calf isolates (25%), and all isolates from cats and dogs clustered in genogroup C. Most isolates from chickens (97%) and turkeys (86%) were grouped in genogroup B, whereas most veal calf isolates (70%) clustered in genogroup D. Therefore, VREF strains are predominantly host-specific, and strains isolated from hospitalized patients are genetically different from the prevailing VREF strains present in the fecal flora of nonhospitalized persons.

Collaboration


Dive into the Rob J. L. Willems's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael S. Gilmore

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge