Antonia Cagnetta
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonia Cagnetta.
Blood | 2012
Yu-Tzu Tai; Betty Y. Chang; Sun Young Kong; Mariateresa Fulciniti; Guang Yang; Yolanda Calle; Yiguo Hu; Jianhong Lin; Jian Jun Zhao; Antonia Cagnetta; Michele Cea; Michael A. Sellitto; Mike Y. Zhong; Qiuju Wang; Chirag Acharya; Daniel R. Carrasco; Joseph J. Buggy; Laurence Elias; Steven P. Treon; William Matsui; Paul G. Richardson; Nikhil C. Munshi; Kenneth C. Anderson
Bruton tyrosine kinase (Btk) has a well-defined role in B-cell development, whereas its expression in osteoclasts (OCs) further suggests a role in osteoclastogenesis. Here we investigated effects of PCI-32765, an oral and selective Btk inhibitor, on osteoclastogenesis as well as on multiple myeloma (MM) growth within the BM microenvironment. PCI-32765 blocked RANKL/M-CSF-induced phosphorylation of Btk and downstream PLC-γ2 in OCs, resulting in diminished TRAP5b (ED50 = 17 nM) and bone resorption activity. PCI-32765 also inhibited secretion of multiple cytokines and chemokines from OC and BM stromal cell cultures from both normal donors (ED50 = 0.5 nM) and MM patients. It decreased SDF-1-induced migration of MM cells, and down-regulated MIP1-α/CCL3 in MM cells. It also blocked MM cell growth and survival triggered by IL-6 or coculture with BM stromal cells or OCs in vitro. Importantly, PCI-32765 treatment significantly inhibits in vivo MM cell growth (P < .03) and MM cell-induced osteolysis of implanted human bone chips in SCID mice. Moreover, PCI-32765 prevents in vitro colony formation by stem-like cells from MM patients. Together, these results delineate functional sequelae of Btk activation mediating osteolysis and growth of MM cells, supporting evaluation of PCI-32765 as a novel therapeutic in MM.
Leukemia | 2014
Yu-Tzu Tai; Yosef Landesman; Chirag Acharya; Yolanda Calle; Mike Zhong; Michele Cea; Daniel Tannenbaum; Antonia Cagnetta; Michaela R. Reagan; Aditya Munshi; William Senapedis; J. R. Saint-Martin; T. Kashyap; Sharon Shacham; Michael Kauffman; Yumei Gu; Lizi Wu; Irene M. Ghobrial; Fenghuang Zhan; Andrew L. Kung; S. A. Schey; Paul G. Richardson; Nikhil C. Munshi; Kenneth C. Anderson
The key nuclear export protein CRM1/XPO1 may represent a promising novel therapeutic target in human multiple myeloma (MM). Here we showed that chromosome region maintenance 1 (CRM1) is highly expressed in patients with MM, plasma cell leukemia cells and increased in patient cells resistant to bortezomib treatment. CRM1 expression also correlates with increased lytic bone and shorter survival. Importantly, CRM1 knockdown inhibits MM cell viability. Novel, oral, irreversible selective inhibitors of nuclear export (SINEs) targeting CRM1 (KPT-185, KPT-330) induce cytotoxicity against MM cells (ED50<200 nM), alone and cocultured with bone marrow stromal cells (BMSCs) or osteoclasts (OC). SINEs trigger nuclear accumulation of multiple CRM1 cargo tumor suppressor proteins followed by growth arrest and apoptosis in MM cells. They further block c-myc, Mcl-1, and nuclear factor κB (NF-κB) activity. SINEs induce proteasome-dependent CRM1 protein degradation; concurrently, they upregulate CRM1, p53-targeted, apoptosis-related, anti-inflammatory and stress-related gene transcripts in MM cells. In SCID mice with diffuse human MM bone lesions, SINEs show strong anti-MM activity, inhibit MM-induced bone lysis and prolong survival. Moreover, SINEs directly impair osteoclastogenesis and bone resorption via blockade of RANKL-induced NF-κB and NFATc1, with minimal impact on osteoblasts and BMSCs. These results support clinical development of SINE CRM1 antagonists to improve patient outcome in MM.
Blood | 2014
Yu-Tzu Tai; Patrick Mayes; Chirag Acharya; Mike Y. Zhong; Michele Cea; Antonia Cagnetta; Jenny L. Craigen; John Yates; Louise Gliddon; William Fieles; Bao Hoang; James Tunstead; Amanda L. Christie; Andrew L. Kung; Paul G. Richardson; Nikhil C. Munshi; Kenneth C. Anderson
B-cell maturation antigen (BCMA), highly expressed on malignant plasma cells in human multiple myeloma (MM), has not been effectively targeted with therapeutic monoclonal antibodies. We here show that BCMA is universally expressed on the MM cell surface and determine specific anti-MM activity of J6M0-mcMMAF (GSK2857916), a novel humanized and afucosylated antagonistic anti-BCMA antibody-drug conjugate via a noncleavable linker. J6M0-mcMMAF specifically blocks cell growth via G2/M arrest and induces caspase 3-dependent apoptosis in MM cells, alone and in coculture with bone marrow stromal cells or various effector cells. It strongly inhibits colony formation by MM cells while sparing surrounding BCMA-negative normal cells. J6M0-mcMMAF significantly induces effector cell-mediated lysis against allogeneic or autologous patient MM cells, with increased potency and efficacy compared with the wild-type J6M0 without Fc enhancement. The antibody-dependent cell-mediated cytotoxicity and apoptotic activity of J6M0-mcMMAF is further enhanced by lenalidomide. Importantly, J6M0-mcMMAF rapidly eliminates myeloma cells in subcutaneous and disseminated mouse models, and mice remain tumor-free up to 3.5 months. Furthermore, J6M0-mcMMAF recruits macrophages and mediates antibody-dependent cellular phagocytosis of MM cells. Together, these results demonstrate that GSK2857916 has potent and selective anti-MM activities via multiple cytotoxic mechanisms, providing a promising next-generation immunotherapeutic in this cancer.
Blood | 2012
Michele Cea; Antonia Cagnetta; Mariateresa Fulciniti; Yu-Tzu Tai; Teru Hideshima; Dharminder Chauhan; Aldo M. Roccaro; Antonio Sacco; Teresa Calimeri; Francesca Cottini; Jana Jakubikova; Sun Young Kong; Franco Patrone; Alessio Nencioni; Marco Gobbi; Paul G. Richardson; Nikhil C. Munshi; Kenneth C. Anderson
Malignant cells have a higher nicotinamide adenine dinucleotide (NAD(+)) turnover rate than normal cells, making this biosynthetic pathway an attractive target for cancer treatment. Here we investigated the biologic role of a rate-limiting enzyme involved in NAD(+) synthesis, Nampt, in multiple myeloma (MM). Nampt-specific chemical inhibitor FK866 triggered cytotoxicity in MM cell lines and patient MM cells, but not normal donor as well as MM patients PBMCs. Importantly, FK866 in a dose-dependent fashion triggered cytotoxicity in MM cells resistant to conventional and novel anti-MM therapies and overcomes the protective effects of cytokines (IL-6, IGF-1) and bone marrow stromal cells. Nampt knockdown by RNAi confirmed its pivotal role in maintenance of both MM cell viability and intracellular NAD(+) stores. Interestingly, cytotoxicity of FK866 triggered autophagy, but not apoptosis. A transcriptional-dependent (TFEB) and independent (PI3K/mTORC1) activation of autophagy mediated FK866 MM cytotoxicity. Finally, FK866 demonstrated significant anti-MM activity in a xenograft-murine MM model, associated with down-regulation of ERK1/2 phosphorylation and proteolytic cleavage of LC3 in tumor cells. Our data therefore define a key role of Nampt in MM biology, providing the basis for a novel targeted therapeutic approach.
PLOS ONE | 2011
Michele Cea; Debora Soncini; Floriana Fruscione; Lizzia Raffaghello; Anna Garuti; Laura Emionite; Eva Moran; Mirko Magnone; Gabriele Zoppoli; Daniele Reverberi; Irene Caffa; Annalisa Salis; Antonia Cagnetta; Micaela Bergamaschi; Salvatore Casciaro; Ivana Pierri; Gianluca Damonte; Filippo Ansaldi; Marco Gobbi; Vito Pistoia; Alberto Ballestrero; Franco Patrone; Santina Bruzzone; Alessio Nencioni
Aberrant histone deacetylase (HDAC) activity is frequent in human leukemias. However, while classical, NAD+-independent HDACs are an established therapeutic target, the relevance of NAD+-dependent HDACs (sirtuins) in leukemia treatment remains unclear. Here, we assessed the antileukemic activity of sirtuin inhibitors and of the NAD+-lowering drug FK866, alone and in combination with traditional HDAC inhibitors. Primary leukemia cells, leukemia cell lines, healthy leukocytes and hematopoietic progenitors were treated with sirtuin inhibitors (sirtinol, cambinol, EX527) and with FK866, with or without addition of the HDAC inhibitors valproic acid, sodium butyrate, and vorinostat. Cell death was quantified by propidium iodide cell staining and subsequent flow-cytometry. Apoptosis induction was monitored by cell staining with FITC-Annexin-V/propidium iodide or with TMRE followed by flow-cytometric analysis, and by measuring caspase3/7 activity. Intracellular Bax was detected by flow-cytometry and western blotting. Cellular NAD+ levels were measured by enzymatic cycling assays. Bax was overexpressed by retroviral transduction. Bax and SIRT1 were silenced by RNA-interference. Sirtuin inhibitors and FK866 synergistically enhanced HDAC inhibitor activity in leukemia cells, but not in healthy leukocytes and hematopoietic progenitors. In leukemia cells, HDAC inhibitors were found to induce upregulation of Bax, a pro-apoptotic Bcl2 family-member whose translocation to mitochondria is normally prevented by SIRT1. As a result, leukemia cells become sensitized to sirtuin inhibitor-induced apoptosis. In conclusion, NAD+-independent HDACs and sirtuins cooperate in leukemia cells to avoid apoptosis. Combining sirtuin with HDAC inhibitors results in synergistic antileukemic activity that could be therapeutically exploited.
Blood | 2013
Antonia Cagnetta; Michele Cea; Teresa Calimeri; Chirag Acharya; Mariateresa Fulciniti; Yu-Tzu Tai; Teru Hideshima; Dharminder Chauhan; Mike Y. Zhong; Franco Patrone; Alessio Nencioni; Marco Gobbi; Paul G. Richardson; Nikhil C. Munshi; Kenneth C. Anderson
We recently demonstrated that Nicotinamide phosphoribosyltransferase (Nampt) inhibition depletes intracellular NAD⁺ content leading, to autophagic multiple myeloma (MM) cell death. Bortezomib has remarkably improved MM patient outcome, but dose-limiting toxicities and development of resistance limit its long-term utility. Here we observed higher Nampt messenger RNA levels in bortezomib-resistant patient MM cells, which correlated with decreased overall survival. We demonstrated that combining the NAD⁺ depleting agent FK866 with bortezomib induces synergistic anti-MM cell death and overcomes bortezomib resistance. This effect is associated with (1) activation of caspase-8, caspase-9, caspase-3, poly (ADP-ribose) polymerase, and downregulation of Mcl-1; (2) enhanced intracellular NAD⁺ depletion; (3) inhibition of chymotrypsin-like, caspase-like, and trypsin-like proteasome activities; (4) inhibition of nuclear factor κB signaling; and (5) inhibition of angiogenesis. Furthermore, Nampt knockdown significantly enhances the anti-MM effect of bortezomib, which can be rescued by ectopically overexpressing Nampt. In a murine xenograft MM model, low-dose combination FK866 and Bortezomib is well tolerated, significantly inhibits tumor growth, and prolongs host survival. Taken together, these findings indicate that intracellular NAD⁺ level represents a major determinant in the ability of bortezomib to induce apoptosis in MM cells and provide proof of concept for the combination with FK866 as a new strategy to enhance sensitivity or overcome resistance to bortezomib.
Blood | 2016
Yu-Tzu Tai; Chirag Acharya; Gang An; Michele Moschetta; Mike Y. Zhong; Xiaoyan Feng; Michele Cea; Antonia Cagnetta; Kenneth Wen; Hans van Eenennaam; Andrea van Elsas; Lugui Qiu; Paul G. Richardson; Nikhil C. Munshi; Kenneth C. Anderson
Here we show that overexpression or activation of B-cell maturation antigen (BCMA) by its ligand, a proliferation-inducing ligand (APRIL), promotes human multiple myeloma (MM) progression in vivo. BCMA downregulation strongly decreases viability and MM colony formation; conversely, BCMA overexpression augments MM cell growth and survival via induction of protein kinase B (AKT), MAPK, and nuclear factor (NF)-κB signaling cascades. Importantly, BCMA promotes in vivo growth of xenografted MM cells harboring p53 mutation in mice. BCMA-overexpressing tumors exhibit significantly increased CD31/microvessel density and vascular endothelial growth factor compared with paired control tumors. These tumors also express increased transcripts crucial for osteoclast activation, adhesion, and angiogenesis/metastasis, as well as genes mediating immune inhibition including programmed death ligand 1, transforming growth factor β, and interleukin 10. These target genes are consistently induced by paracrine APRIL binding to BCMA on MM cells, which is blocked by an antagonistic anti-APRIL monoclonal antibody hAPRIL01A (01A). 01A is cytotoxic against MM cells even in the presence of protective bone marrow (BM) myeloid cells including osteoclasts, macrophages, and plasmacytoid dendritic cells. 01A further decreases APRIL-induced adhesion and migration of MM cells via blockade of canonical and noncanonical NF-κB pathways. Moreover, 01A prevents in vivo MM cell growth within implanted human bone chips in SCID mice. Finally, the effect of 01A on MM cell viability is enhanced by lenalidomide and bortezomib. Taken together, these data delineate new molecular mechanisms of in vivo MM growth and immunosuppression critically dependent on BCMA and APRIL in the BM microenvironment, further supporting targeting this prominent pathway in MM.
Journal of Biological Chemistry | 2014
Debora Soncini; Irene Caffa; Gabriele Zoppoli; Michele Cea; Antonia Cagnetta; Mario Passalacqua; Luca Mastracci; Silvia Boero; Fabrizio Montecucco; Giovanna Sociali; Denise Lasigliè; Patrizia Damonte; Alessia Grozio; Elena Mannino; Alessandro Poggi; Vito Giuseppe D'Agostino; Fiammetta Monacelli; Alessandro Provenzani; Patrizio Odetti; Alberto Ballestrero; Santina Bruzzone; Alessio Nencioni
Background: Nicotinamide phosphoribosyltransferase (NAMPT) acts both as an enzyme in the production of the coenzyme NAD+ and as a secreted cytokine. Results: In breast cancer cells, NAMPT induces the epithelial-to-mesenchymal transition, a process that underlies metastasis, as a secreted protein independent of its enzymatic activity. Conclusion: Secreted NAMPT promotes epithelial-to-mesenchymal transition. Significance: Extracellular NAMPT neutralization may be of therapeutic value. Boosting NAD+ biosynthesis with NAD+ intermediates has been proposed as a strategy for preventing and treating age-associated diseases, including cancer. However, concerns in this area were raised by observations that nicotinamide phosphoribosyltransferase (NAMPT), a key enzyme in mammalian NAD+ biosynthesis, is frequently up-regulated in human malignancies, including breast cancer, suggesting possible protumorigenic effects for this protein. We addressed this issue by studying NAMPT expression and function in human breast cancer in vivo and in vitro. Our data indicate that high NAMPT levels are associated with aggressive pathological and molecular features, such as estrogen receptor negativity as well as HER2-enriched and basal-like PAM50 phenotypes. Consistent with these findings, we found that NAMPT overexpression in mammary epithelial cells induced epithelial-to-mesenchymal transition, a morphological and functional switch that confers cancer cells an increased metastatic potential. However, importantly, NAMPT-induced epithelial-to-mesenchymal transition was found to be independent of NAMPT enzymatic activity and of the NAMPT product nicotinamide mononucleotide. Instead, it was mediated by secreted NAMPT through its ability to activate the TGFβ signaling pathway via increased TGFβ1 production. These findings have implications for the design of therapeutic strategies exploiting NAD+ biosynthesis via NAMPT in aging and cancer and also suggest the potential of anticancer agents designed to specifically neutralize extracellular NAMPT. Notably, because high levels of circulating NAMPT are found in obese and diabetic patients, our data could also explain the increased predisposition to cancer of these subjects.
Current Pharmaceutical Design | 2012
Michele Cea; Antonia Cagnetta; Marco Gobbi; Franco Patrone; Paul G. Richardson; Teru Hideshima; Kenneth C. Anderson
Multiple Myeloma (MM) is a common hematologic malignancy of plasma cells representing an excellent model of epigenomics dysregulation in human disease. Importantly, these findings, in addition to providing a better understanding of the underlying molecular changes leading to this malignance, furnish the basis for an innovative therapeutic approach. Histone deacetylase inhibitors (HDACIs), including Vorinostat and Panobinostat, represent a novel class of drugs targeting enzymes involved in epigenetic regulation of gene expression, which have been evaluated also for the treatment of multiple myeloma. Although the clinical role in this setting is evolving and their precise utility remains to be determined, to date that single-agent anti-MM activity is modest. More importantly, HDACIs appear to be synergistic both in vitro and in vivo when combined with other anti-MM agents, mainly proteasome inhibitors including bortezomib. The molecular basis underlying this synergism seems to be multifactorial and involves interference with protein degradation as well as the interaction of myeloma cells with microenvironment. Here we review molecular events underling antitumor effects of HDACIs and the most recent results of clinical trials in relapsed and refractory MM.
Leukemia & Lymphoma | 2011
Maurizio Miglino; Nicoletta Colombo; Gianmatteo Pica; Raffaella Grasso; Marino Clavio; Micaela Bergamaschi; Filippo Ballerini; Anna Ghiso; Chiara Ghiggi; Laura Mitscheunig; Germana Beltrami; Antonia Cagnetta; Luana Vignolo; Maria Vita Lucchetti; Sara Aquino; Ivana Pierri; Mario Sessarego; Angelo Michele Carella; Marco Gobbi
Abstract We reviewed the frequency and prognostic significance of FLT3 (fms-like tyrosine kinase receptor-3) and NPM (nucleophosmin) gene mutations and WT1 (Wilms’ tumor) and BAALC (brain and acute leukemia, cytoplasmic) gene expression in 100 consecutive patients with intermediate and poor cytogenetic risk de novo acute myeloid leukemia (AML) receiving conventional anthracycline–AraC based therapy. We observed a strict relationship between unfavorable karyotype and BAALC >1000 (p = 0.0001). Multivariate analysis of 81 patients with intermediate karyotype revealed that younger age (p = 0.00009), NPM gene mutation (p = 0.002), and WT1 >75th percentile (>2365) (p = 0.003) were independent, positive factors for complete remission (CR). WT1 expression above 2365 was correlated also to longer event-free survival (EFS) and overall survival (OS) in the same subset of patients (p = 0.003 and p = 0.02, respectively); the same finding occurred in younger patients with AML with intermediate karyotype (p = 0.008 and p = 0.01, respectively). In patients with intermediate karyotype, FLT3 internal tandem duplication (ITD) negatively affected EFS (EFS at 30 months: 30% vs. 6% in FLT3-ITD negative and FLT3 positive patients, respectively; p = 0.01) and OS (OS at 30 months: 38% vs. 20%, p = 0.03). The positive prognostic value of high WT1 expression does not have a clear explanation; it may be implicated either with WT1 anti-oncogenic function, or with the stimulating effect of WT1 oncogene on the leukemic cellular cycle, possibly associated with an enhanced response to chemotherapy.