Antonia P. Sagona
University of Oslo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonia P. Sagona.
Journal of Cell Biology | 2008
Ioannis P. Nezis; Anne Simonsen; Antonia P. Sagona; Kim D. Finley; Sébastien Gaumer; Didier Contamine; Tor Erik Rusten; Harald Stenmark; Andreas Brech
p62 has been proposed to mark ubiquitinated protein bodies for autophagic degradation. We report that the Drosophila melanogaster p62 orthologue, Ref(2)P, is a regulator of protein aggregation in the adult brain. We demonstrate that Ref(2)P localizes to age-induced protein aggregates as well as to aggregates caused by reduced autophagic or proteasomal activity. A similar localization to protein aggregates is also observed in D. melanogaster models of human neurodegenerative diseases. Although atg8a autophagy mutant flies show accumulation of ubiquitin- and Ref(2)P-positive protein aggregates, this is abrogated in atg8a/ref(2)P double mutants. Both the multimerization and ubiquitin binding domains of Ref(2)P are required for aggregate formation in vivo. Our findings reveal a major role for Ref(2)P in the formation of ubiquitin-positive protein aggregates both under physiological conditions and when normal protein turnover is inhibited.
Nature Cell Biology | 2010
Antonia P. Sagona; Ioannis P. Nezis; Nina Marie Pedersen; Knut Liestøl; John S. Poulton; Tor Erik Rusten; Rolf I. Skotheim; Camilla Raiborg; Harald Stenmark
Several subunits of the class III phosphatidylinositol-3-OH kinase (PI(3)K-III) complex are known as tumour suppressors. Here we uncover a function for this complex and its catalytic product phosphatidylinositol-3-phosphate (PtdIns(3)P) in cytokinesis. We show that PtdIns(3)P localizes to the midbody during cytokinesis and recruits a centrosomal protein, FYVE-CENT (ZFYVE26), and its binding partner TTC19, which in turn interacts with CHMP4B, an endosomal sorting complex required for transport (ESCRT)-III subunit implicated in the abscission step of cytokinesis. Translocation of FYVE-CENT and TTC19 from the centrosome to the midbody requires another FYVE-CENT-interacting protein, the microtubule motor KIF13A. Depletion of the VPS34 or Beclin 1 subunits of PI(3)K-III causes cytokinesis arrest and an increased number of binucleate and multinucleate cells, in a similar manner to the depletion of FYVE-CENT, KIF13A or TTC19. These results provide a mechanism for the translocation and docking of a cytokinesis regulatory machinery at the midbody.
Journal of Cell Biology | 2010
Ioannis P. Nezis; Bhupendra V. Shravage; Antonia P. Sagona; Trond Lamark; Geir Bjørkøy; Terje Johansen; Tor Erik Rusten; Andreas Brech; Eric H. Baehrecke; Harald Stenmark
Blocking autophagy protects the apoptosis inhibitor dBruce from destruction and promotes nurse cell survival in developing egg chambers.
FEBS Letters | 2010
Antonia P. Sagona; Harald Stenmark
Cytokinesis is the final stage of cell division during which the two daughter cells separate completely. Although less well understood than some of the earlier phases of the cell cycle, recent discoveries have shed light on the mechanisms that orchestrate this process, including cleavage furrow formation, midbody maturation and abscission. One of the reasons why research on cytokinesis has been attracting increasing attention is the concept that failure of this process in mammals is associated with carcinogenesis. In this minireview, we will discuss the possible links between cytokinesis and cancer, and highlight key mechanisms that connect these processes.
Trends in Cell Biology | 2010
Ioannis P. Nezis; Antonia P. Sagona; Kay Oliver Schink; Harald Stenmark
Cytokinesis is the final step of cell division whereby the dividing cells separate physically. Failure of this process has been proposed to cause tumourigenesis. Several specific lipids are essential for cytokinesis, and recent evidence has revealed that phosphatidylinositol 3-phosphate (PtdIns3P) - a well-known regulator of endosomal trafficking, receptor signaling, nutrient sensing and autophagy - plays an evolutionarily conserved role during cytokinesis. The emerging picture is that PtdIns3P and its regulators and effectors constitute a novel regulatory mechanism for cytokinesis. Elucidating the role of PtdIns3P in cytokinesis might contribute to insight into mechanisms of tumour development and suppression.
PLOS ONE | 2011
Antonia P. Sagona; Ioannis P. Nezis; Kristi G. Bache; Kaisa Haglund; Anne Cathrine Bakken; Rolf I. Skotheim; Harald Stenmark
The tumor suppressor activity of Beclin 1 (BECN1), a subunit of class III phosphatidylinositol 3-kinase complex, has been attributed to its regulation of apoptosis and autophagy. Here, we identify FYVE-CENT (ZFYVE26), a phosphatidylinositol 3-phosphate binding protein important for cytokinesis, as a novel interacting protein of Beclin 1. A mutation in FYVE-CENT (R1945Q) associated with breast cancer abolished the interaction between FYVE-CENT and Beclin 1, and reduced the localization of these proteins at the intercellular bridge during cytokinesis. Breast cancer cells containing the FYVE-CENT R1945Q mutation displayed a significant increase in cytokinetic profiles and bi - multinuclear phenotype. Both Beclin 1 and FYVE-CENT were found to be downregulated in advanced breast cancers. These findings suggest a positive feedback loop for recruitment of FYVE-CENT and Beclin 1 to the intercellular bridge during cytokinesis, and reveal a novel potential tumor suppressor mechanism for Beclin 1.
BioMed Research International | 2014
Antonia P. Sagona; Ioannis P. Nezis; Harald Stenmark
Autophagy is a mechanism of cellular self-degradation that is very important for cellular homeostasis and differentiation. Components of the endosomal sorting complex required for transport (ESCRT) machinery are required for endosomal sorting and also for autophagy and the completion of cytokinesis. Here we show that the ESCRT-III subunit CHMP4B not only localizes to normal cytokinetic bridges but also to chromosome bridges and micronuclei, the latter surrounded by lysosomes and autophagosomes. Moreover, CHMP4B can be co-immunoprecipitated with chromatin. Interestingly, a CHMP4B mutation associated with autosomal dominant posterior polar cataract abolishes the ability of CHMP4B to localize to micronuclei. We propose that CHMP4B, through its association with chromatin, may participate in the autophagolysosomal degradation of micronuclei and other extranuclear chromatin. This may have implications for DNA degradation during lens cell differentiation, thus potentially protecting lens cells from cataract development.
Methods of Molecular Biology | 2016
Anthimi Palara; Antonia P. Sagona; Ioannis P. Nezis
Transmission Electron Microscopy (TEM) provides high resolution and accuracy at the subcellular level for observing and investigating cellular structures. This is essential for understanding a large variety of cellular processes. In this chapter, we describe a detailed protocol for preparing Drosophila follicles in order to be used as a specimen for transmission electron microscopy.
Methods of Molecular Biology | 2016
Panagiotis Tsapras; Antonia P. Sagona; Ioannis P. Nezis
Detecting the localization of cellular components using gold nanoparticles has come to offer tremendous advantages in cell biology, allowing for the high resolution imaging of the cellular organization at the subcellular level. This is further aided by the breakthroughs in the cryopreparation of samples, which focus at the retention of antigenicity in efforts to mirror the native state of the tissues and cells as closely as possible. Herein, we describe the methodology for immuno-gold labeling of Drosophila follicles, following preparation of the samples using the Tokuyasu method for ultracryosectioning.
Autophagy | 2010
Ioannis P. Nezis; Bhupendra V. Shravage; Antonia P. Sagona; Terje Johansen; Eric H. Baehrecke; Harald Stenmark