Antonietta Gentile
University of Rome Tor Vergata
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonietta Gentile.
PLOS ONE | 2013
Robert Nisticò; Dalila Mango; Georgia Mandolesi; Sonia Piccinin; Nicola Berretta; Marco Pignatelli; Marco Feligioni; Alessandra Musella; Antonietta Gentile; Francesco Mori; Giorgio Bernardi; Ferdinando Nicoletti; Nicola B. Mercuri; Diego Centonze
Abnormal use-dependent synaptic plasticity is universally accepted as the main physiological correlate of memory deficits in neurodegenerative disorders. It is unclear whether synaptic plasticity deficits take place during neuroinflammatory diseases, such as multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis (EAE). In EAE mice, we found significant alterations of synaptic plasticity rules in the hippocampus. When compared to control mice, in fact, hippocampal long-term potentiation (LTP) induction was favored over long-term depression (LTD) in EAE, as shown by a significant rightward shift in the frequency–synaptic response function. Notably, LTP induction was also enhanced in hippocampal slices from control mice following interleukin-1β (IL-1β) perfusion, and both EAE and IL-1β inhibited GABAergic spontaneous inhibitory postsynaptic currents (sIPSC) without affecting glutamatergic transmission and AMPA/NMDA ratio. EAE was also associated with selective loss of GABAergic interneurons and with reduced gamma-frequency oscillations in the CA1 region of the hippocampus. Finally, we provided evidence that microglial activation in the EAE hippocampus was associated with IL-1β expression, and hippocampal slices from control mice incubated with activated microglia displayed alterations of GABAergic transmission similar to those seen in EAE brains, through a mechanism dependent on enhanced IL-1β signaling. These data may yield novel insights into the basis of cognitive deficits in EAE and possibly of MS.
The Journal of Neuroscience | 2013
Georgia Mandolesi; Alessandra Musella; Antonietta Gentile; Giorgio Grasselli; Nabila Haji; Helena Sepman; Diego Fresegna; Silvia Bullitta; Francesca De Vito; Gabriele Musumeci; Claudio Di Sanza; Piergiorgio Strata; Diego Centonze
Cerebellar deficit contributes significantly to disability in multiple sclerosis (MS). Several clinical and experimental studies have investigated the pathophysiology of cerebellar dysfunction in this neuroinflammatory disorder, but the cellular and molecular mechanisms are still unclear. In experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, proinflammatory cytokines, together with a degeneration of inhibitory neurons, contribute to impair GABAergic transmission at Purkinje cells (PCs). Here, we investigated glutamatergic transmission to gain insight into the pathophysiology of cerebellar dysfunction in EAE. Electrophysiological recordings from PCs showed increased duration of spontaneous excitatory postsynaptic currents (EPSCs) during the symptomatic phase of EAE, suggesting an alteration of glutamate uptake played by Bergmann glia. We indeed observed an impaired functioning of the glutamate-aspartate transporter/excitatory amino acid transporter 1 (GLAST/EAAT1) in EAE cerebellum caused by protein downregulation and in correlation with prominent astroglia activation. We have also demonstrated that the proinflammatory cytokine interleukin-1β (IL-1β), released by a subset of activated microglia/macrophages and infiltrating lymphocytes, was involved directly in such synaptic alteration. In fact, brief incubation of IL-1β in normal cerebellar slices replicated EAE modifications through a rapid GLAST/EAAT1 downregulation, whereas incubation of an IL-1 receptor antagonist (IL-1ra) in EAE slices reduced spontaneous EPSC alterations. Finally, EAE mice treated with intracerebroventricular IL-1ra showed normal glutamatergic and GABAergic transmissions, along with GLAST/EAAT1 normalization, milder inflammation, and reduced motor deficits. These results highlight the crucial role played by the proinflammatory IL-1β in triggering molecular and synaptic events involved in neurodegenerative processes that characterize neuroinflammatory diseases such as MS.
Experimental Neurology | 2012
Nabila Haji; Georgia Mandolesi; Antonietta Gentile; Lucia Sacchetti; Diego Fresegna; Silvia Rossi; Alessandra Musella; Helena Sepman; Caterina Motta; Valeria Studer; Valentina De Chiara; Giorgio Bernardi; Piergiorgio Strata; Diego Centonze
Multiple sclerosis (MS) causes a variety of motor and sensory deficits and it is also associated with mood disturbances. It is unclear if anxiety and depression in MS entirely reflect a subjective reaction to a chronic disease causing motor disability or rather depend on specific effects of neuroinflammation in neuronal circuits. To answer this question, behavioral, electrophysiological, and immunofluorescence experiments were performed in mice with experimental autoimmune encephalomyelitis (EAE), which models MS in mice. First, we observed high anxiety indexes in EAE mice, preceding the appearance of motor defects. Then, we demonstrated that tumor necrosis factor α (TNF-α) has a crucial role in anxiety associated with neuroinflammation. In fact, intracerebroventricular (icv) administration of etanercept, an inhibitor of TNF-α signaling, resulted in anxiolytic-like effects in EAE-mice. Accordingly, icv injection of TNF-α induced per se overt anxious behavior in control mice. Moreover, we propose the striatum as one of the brain regions potentially involved in EAE anxious behavior. We observed that before disease onset EAE striatum presents elevated TNF-α levels and strong activated microglia, early signs of inflammation associated with alterations of striatal excitatory postsynaptic currents (EPSCs). Interestingly, etanercept corrected the synaptic defects of pre-symptomatic EAE mice while icv injection of TNF-α in non-EAE mice altered EPSCs, thus mimicking the synaptic effects of EAE. In conclusion, anxiety characterizes EAE course since the very early phases of the disease. TNF-α released from activated microglia mediates this effect likely through the modulation of striatal excitatory synaptic transmission.
Stem Cells International | 2011
Giuliana Di Rocco; Antonietta Gentile; Annalisa Antonini; Francesca Ceradini; Joseph C. Wu; Maurizio C. Capogrossi; Gabriele Toietta
Chronic ulcers represent a major health problem in diabetic patients resulting in pain and discomfort. Conventional therapy does not guarantee adequate wound repair. In diabetes, impaired healing is partly due to poor endothelial progenitor cells mobilisation and homing, with altered levels of the chemokine stromal-derived factor-1 (SDF-1) at the wound site. Adipose tissue-associated stromal cells (AT-SCs) can provide an accessible source of progenitor cells secreting proangiogenic factors and differentiating into endothelial-like cells. We demonstrated that topical administration of AT-SCs genetically modified ex vivo to overexpress SDF-1, promotes wound healing into diabetic mice. In particular, by in vivo bioluminescent imaging analysis, we monitored biodistribution and survival after transplantation of luciferase-expressing cells. In conclusion, this study indicates the therapeutic potential of AT-SCs administration in wound healing, through cell differentiation, enhanced cellular recruitment at the wound site, and paracrine effects associated with local growth-factors production.
Neuromolecular Medicine | 2014
Francesco Mori; Robert Nisticò; Georgia Mandolesi; Sonia Piccinin; Dalila Mango; Hajime Kusayanagi; Nicola Berretta; Alessandra Bergami; Antonietta Gentile; Alessandra Musella; Carolina G. Nicoletti; Ferdinando Nicoletti; Fabio Buttari; Nicola B. Mercuri; Gianvito Martino; Roberto Furlan; Diego Centonze
The immune system shapes synaptic transmission and plasticity in experimental autoimmune encephalomyelitis (EAE), the mouse model of multiple sclerosis (MS). These synaptic adaptations are believed to drive recovery of function after brain lesions, and also learning and memory deficits and excitotoxic neurodegeneration; whether inflammation influences synaptic plasticity in MS patients is less clear. In a cohort of 59 patients with MS, we found that continuous theta-burst transcranial magnetic stimulation did not induce the expected long-term depression (LTD)-like synaptic phenomenon, but caused persisting enhancement of brain cortical excitability. The amplitude of this long-term potentiation (LTP)-like synaptic phenomenon correlated with the concentration of the pro-inflammatory cytokine interleukin-1β (IL-1β) in the cerebrospinal fluid. In MS and EAE, the brain and spinal cord are typically enriched of CD3+ T lymphocyte infiltrates, which are, along with activated microglia and astroglia, a major cause of inflammation. Here, we found a correlation between the presence of infiltrating T lymphocytes in the hippocampus of EAE mice and synaptic plasticity alterations. We observed that T lymphocytes from EAE, but not from control mice, release IL-1β and promote LTP appearance over LTD, thereby mimicking the facilitated LTP induction observed in the cortex of MS patients. EAE-specific T lymphocytes were able to suppress GABAergic transmission in an IL-1β-dependent manner, providing a possible synaptic mechanism able to lower the threshold of LTP induction in MS brains. Moreover, in vivo blockade of IL-1β signaling resulted in inflammation and synaptopathy recovery in EAE hippocampus. These data provide novel insights into the pathophysiology of MS.
Neurobiology of Disease | 2012
Georgia Mandolesi; Giorgio Grasselli; Alessandra Musella; Antonietta Gentile; Gabriele Musumeci; Helena Sepman; Nabila Haji; Diego Fresegna; Giorgio Bernardi; Diego Centonze
A significant proportion of multiple sclerosis (MS) patients have functionally relevant cerebellar deficits, which significantly contribute to disability. Although clinical and experimental studies have been conducted to understand the pathophysiology of cerebellar dysfunction in MS, no electrophysiological and morphological studies have investigated potential alterations of synaptic connections of cerebellar Purkinje cells (PC). For this reason we analyzed cerebellar PC GABAergic connectivity in mice with MOG((35-55))-induced experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. We observed a strong reduction in the frequency of the spontaneous inhibitory post-synaptic currents (IPSCs) recorded from PCs during the symptomatic phase of the disease, and in presence of prominent microglia activation not only in the white matter (WM) but also in the molecular layer (ML). The massive GABAergic innervation on PCs from basket and stellate cells was reduced and associated to a decrease of the number of these inhibitory interneurons. On the contrary no significant loss of the PCs could be detected. Incubation of interleukin-1beta (IL-1β) was sufficient to mimic the electrophysiological alterations observed in EAE mice. We thus suggest that microglia and pro-inflammatory cytokines, together with a degeneration of basket and stellate cells and their synaptic terminals, contribute to impair GABAergic transmission on PCs during EAE. Our results support a growing body of evidence that GABAergic signaling is compromised in EAE and in MS, and show a selective susceptibility to neuronal and synaptic degeneration of cerebellar inhibitory interneurons.
British Journal of Pharmacology | 2013
Giorgio Grasselli; S. Rossi; Alessandra Musella; Antonietta Gentile; Stefano Loizzo; Luca Muzio; C. Di Sanza; Francesco d’Errico; Gabriele Musumeci; Nabila Haji; Diego Fresegna; Helena Sepman; V De Chiara; Roberto Furlan; Gianvito Martino; Alessandro Usiello; Georgia Mandolesi; Diego Centonze
Glutamate transmission is dysregulated in both multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), the animal model of MS. A characteristic of EAE is increased glutamate transmission associated with up‐regulation of AMPA receptors. However, little is known about the role of NMDA receptors in the synaptic modifications induced by EAE.
The Journal of Neuroscience | 2017
Georgia Mandolesi; Francesca De Vito; Alessandra Musella; Antonietta Gentile; Silvia Bullitta; Diego Fresegna; Helena Sepman; Claudio Di Sanza; Nabila Haji; Francesco Mori; Fabio Buttari; Emerald Perlas; Maria Teresa Ciotti; Eran Hornstein; Irene Bozzoni; Carlo Presutti; Diego Centonze
MicroRNAs (miRNA) play an important role in posttranscriptional gene regulation of several physiological and pathological processes. In multiple sclerosis (MS), a chronic inflammatory and degenerative disease of the CNS, and in its mouse model, the experimental autoimmune encephalomyelitis (EAE), miRNA dysregulation has been mainly related to immune system dysfunction and white matter pathology. However, little is known about their role in grey matter pathology. Here, we explored miRNA involvement in the inflammation-driven alterations of synaptic structure and function, collectively known as synaptopathy, a neuropathological process contributing to excitotoxic neurodegeneration in MS/EAE. Particularly, we observed that miR-142-3p is increased in the cerebrospinal fluid (CSF) of patients with active MS and in EAE brains. We propose miR-142-3p as a molecular mediator of the IL-1β-dependent down-regulation of the glial glutamate-aspartate transporter (GLAST), which causes an enhancement of the glutamatergic transmission in the EAE cerebellum. The synaptic abnormalities mediated by IL-1β and the clinical and neuropathological manifestations of EAE disappeared in miR-142 knock-out mice. Furthermore, we observed that in vivo miR-142-3p inhibition, either by a preventive and local treatment or by a therapeutic and systemic strategy, abolished IL-1β- and GLAST-dependent synaptopathy in EAE wild-type mice. Consistently, miR-142-3p was responsible for the glutamatergic synaptic alterations caused by CSF of patients with MS, and CSF levels of miR-142-3p correlated with prospective MS disease progression. Our findings highlight miR-142-3p as key molecular player in IL-1β-mediated synaptic dysfunction possibly leading to excitotoxic damage in both EAE and MS diseases. Inhibition of miR-142-3p could be neuroprotective in MS. SIGNIFICANCE STATEMENT Current studies suggest the role of glutamate excitotoxicity in the development and progression of MS and of its mouse model EAE. The molecular mechanisms linking inflammation and synaptic alterations in MS/EAE are still unknown. Here, we identified miR-142-3p as a determinant molecular actor in inflammation-dependent synaptopathy typical of both MS and EAE. miR-142-3p was up-regulated in the cerebrospinal fluid of MS patients and in EAE brains. Inhibition of miR-142-3p, locally in EAE brain and in a MS chimeric in vitro model, recovered glutamatergic synaptic enhancement typical of EAE/MS. We proved that miR-142-3p promoted the IL-1β-dependent glutamate dysfunction by targeting GLAST, a crucial glial transporter involved in glutamate homeostasis. Finally, we suggest miR-142-3p as a negative prognostic factor in RRMS patients.
Neurobiology of Disease | 2015
Antonietta Gentile; Diego Fresegna; Mauro Federici; Alessandra Musella; Francesca Romana Rizzo; Helena Sepman; Silvia Bullitta; Francesca De Vito; Nabila Haji; Silvia Rossi; Nicola B. Mercuri; Alessandro Usiello; Georgia Mandolesi; Diego Centonze
Mood disturbances are frequent in patients with multiple sclerosis (MS), even in non-disabled patients and in the remitting stages of the disease. It is still largely unknown how the pathophysiological process on MS causes anxiety and depression, but the dopaminergic system is likely involved. Aim of the present study was to investigate depressive-like behavior in mice with experimental autoimmune encephalomyelitis (EAE), a model of MS, and its possible link to dopaminergic neurotransmission. Behavioral, amperometric and biochemical experiments were performed to determine the role of inflammation in mood control in EAE. First, we assessed the independence of mood alterations from motor disability during the acute phase of the disease, by showing a depressive-like behavior in EAE mice with mild clinical score and preserved motor skills (mild-EAE). Second, we linked such behavioral changes to the selective increased striatal expression of interleukin-1beta (IL-1β) in a context of mild inflammation and to dopaminergic system alterations. Indeed, in the striatum of EAE mice, we observed an impairment of dopamine (DA) neurotransmission, since DA release was reduced and signaling through DA D1- and D2-like receptors was unbalanced. In conclusion, the present study provides first evidence of the link between the depressive-like behavior and the alteration of dopaminergic system in EAE mice, raising the possibility that IL-1β driven dysfunction of dopaminergic signaling might play a role in mood disturbances also in MS patients.
The Cerebellum | 2015
Georgia Mandolesi; Antonietta Gentile; Alessandra Musella; Diego Centonze
Multiple sclerosis (MS) is considered as an autoimmune inflammatory disease and is one of the main causes of motor disability in young adults. Focal white matter lesions consisting of T lymphocyte and macrophage infiltrates, demyelination, and axonal transection are clear hallmarks of MS disease. However, white matter pathology does not occur exclusively. Clinical and experimental studies have shown gray matter atrophy and lesions occurring in several brain regions, including the cerebellum. Cerebellar-dependent disability is very common in MS patients. Cerebellar deficits are also relatively refractory to symptomatic therapy and progress even under disease-modifying agents. However, the neuropathology underlying cerebellar dysfunction remains largely unknown. We recently demonstrated that the cerebellum is also targeted in experimental autoimmune encephalomyelitis (EAE), the most widely used animal model of MS. Electrophysiological studies, supported by immunofluorescence and biochemical analysis, revealed an imbalance between the spontaneous excitatory and inhibitory synaptic transmission at Purkinje cell synapses. While the frequency of the spontaneous inhibitory postsynaptic currents (sIPSC) during the acute phase of EAE was reduced in correlation with a selective degeneration of basket and stellate neurons, the glutamatergic transmission was enhanced due to a reduced expression and functioning of glutamate aspartate transporter (GLAST)/excitatory amino acid transporter 1 (EAAT1), the most abundant glutamate transporter expressed by Bergmann glia. Of note, we demonstrated that the proinflammatory cytokine interleukin-1β (IL-1β), highly expressed in EAE cerebellum and released by infiltrating lymphocytes, was one of the molecular players directly responsible for such synaptic alterations during the acute phase. Furthermore, other brain regions in EAE mice seem to be affected by a similar inflammatory dependent synaptopathy, suggesting common molecular targets for potential therapeutic strategies. Accordingly, we observed that intracerebroventricular inhibition of IL-1β signaling in EAE mice was able to ameliorate inflammatory reaction, electrophysiological response, and clinical disability, indicating a pivotal role of IL-1β in EAE disease and likely, in MS.