Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia Bullitta is active.

Publication


Featured researches published by Silvia Bullitta.


The Journal of Neuroscience | 2013

Interleukin-1β Alters Glutamate Transmission at Purkinje Cell Synapses in a Mouse Model of Multiple Sclerosis

Georgia Mandolesi; Alessandra Musella; Antonietta Gentile; Giorgio Grasselli; Nabila Haji; Helena Sepman; Diego Fresegna; Silvia Bullitta; Francesca De Vito; Gabriele Musumeci; Claudio Di Sanza; Piergiorgio Strata; Diego Centonze

Cerebellar deficit contributes significantly to disability in multiple sclerosis (MS). Several clinical and experimental studies have investigated the pathophysiology of cerebellar dysfunction in this neuroinflammatory disorder, but the cellular and molecular mechanisms are still unclear. In experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, proinflammatory cytokines, together with a degeneration of inhibitory neurons, contribute to impair GABAergic transmission at Purkinje cells (PCs). Here, we investigated glutamatergic transmission to gain insight into the pathophysiology of cerebellar dysfunction in EAE. Electrophysiological recordings from PCs showed increased duration of spontaneous excitatory postsynaptic currents (EPSCs) during the symptomatic phase of EAE, suggesting an alteration of glutamate uptake played by Bergmann glia. We indeed observed an impaired functioning of the glutamate-aspartate transporter/excitatory amino acid transporter 1 (GLAST/EAAT1) in EAE cerebellum caused by protein downregulation and in correlation with prominent astroglia activation. We have also demonstrated that the proinflammatory cytokine interleukin-1β (IL-1β), released by a subset of activated microglia/macrophages and infiltrating lymphocytes, was involved directly in such synaptic alteration. In fact, brief incubation of IL-1β in normal cerebellar slices replicated EAE modifications through a rapid GLAST/EAAT1 downregulation, whereas incubation of an IL-1 receptor antagonist (IL-1ra) in EAE slices reduced spontaneous EPSC alterations. Finally, EAE mice treated with intracerebroventricular IL-1ra showed normal glutamatergic and GABAergic transmissions, along with GLAST/EAAT1 normalization, milder inflammation, and reduced motor deficits. These results highlight the crucial role played by the proinflammatory IL-1β in triggering molecular and synaptic events involved in neurodegenerative processes that characterize neuroinflammatory diseases such as MS.


The Journal of Neuroscience | 2017

miR-142-3p Is a Key Regulator of IL-1β-Dependent Synaptopathy in Neuroinflammation

Georgia Mandolesi; Francesca De Vito; Alessandra Musella; Antonietta Gentile; Silvia Bullitta; Diego Fresegna; Helena Sepman; Claudio Di Sanza; Nabila Haji; Francesco Mori; Fabio Buttari; Emerald Perlas; Maria Teresa Ciotti; Eran Hornstein; Irene Bozzoni; Carlo Presutti; Diego Centonze

MicroRNAs (miRNA) play an important role in posttranscriptional gene regulation of several physiological and pathological processes. In multiple sclerosis (MS), a chronic inflammatory and degenerative disease of the CNS, and in its mouse model, the experimental autoimmune encephalomyelitis (EAE), miRNA dysregulation has been mainly related to immune system dysfunction and white matter pathology. However, little is known about their role in grey matter pathology. Here, we explored miRNA involvement in the inflammation-driven alterations of synaptic structure and function, collectively known as synaptopathy, a neuropathological process contributing to excitotoxic neurodegeneration in MS/EAE. Particularly, we observed that miR-142-3p is increased in the cerebrospinal fluid (CSF) of patients with active MS and in EAE brains. We propose miR-142-3p as a molecular mediator of the IL-1β-dependent down-regulation of the glial glutamate-aspartate transporter (GLAST), which causes an enhancement of the glutamatergic transmission in the EAE cerebellum. The synaptic abnormalities mediated by IL-1β and the clinical and neuropathological manifestations of EAE disappeared in miR-142 knock-out mice. Furthermore, we observed that in vivo miR-142-3p inhibition, either by a preventive and local treatment or by a therapeutic and systemic strategy, abolished IL-1β- and GLAST-dependent synaptopathy in EAE wild-type mice. Consistently, miR-142-3p was responsible for the glutamatergic synaptic alterations caused by CSF of patients with MS, and CSF levels of miR-142-3p correlated with prospective MS disease progression. Our findings highlight miR-142-3p as key molecular player in IL-1β-mediated synaptic dysfunction possibly leading to excitotoxic damage in both EAE and MS diseases. Inhibition of miR-142-3p could be neuroprotective in MS. SIGNIFICANCE STATEMENT Current studies suggest the role of glutamate excitotoxicity in the development and progression of MS and of its mouse model EAE. The molecular mechanisms linking inflammation and synaptic alterations in MS/EAE are still unknown. Here, we identified miR-142-3p as a determinant molecular actor in inflammation-dependent synaptopathy typical of both MS and EAE. miR-142-3p was up-regulated in the cerebrospinal fluid of MS patients and in EAE brains. Inhibition of miR-142-3p, locally in EAE brain and in a MS chimeric in vitro model, recovered glutamatergic synaptic enhancement typical of EAE/MS. We proved that miR-142-3p promoted the IL-1β-dependent glutamate dysfunction by targeting GLAST, a crucial glial transporter involved in glutamate homeostasis. Finally, we suggest miR-142-3p as a negative prognostic factor in RRMS patients.


Neurobiology of Disease | 2015

Dopaminergic dysfunction is associated with IL-1β-dependent mood alterations in experimental autoimmune encephalomyelitis

Antonietta Gentile; Diego Fresegna; Mauro Federici; Alessandra Musella; Francesca Romana Rizzo; Helena Sepman; Silvia Bullitta; Francesca De Vito; Nabila Haji; Silvia Rossi; Nicola B. Mercuri; Alessandro Usiello; Georgia Mandolesi; Diego Centonze

Mood disturbances are frequent in patients with multiple sclerosis (MS), even in non-disabled patients and in the remitting stages of the disease. It is still largely unknown how the pathophysiological process on MS causes anxiety and depression, but the dopaminergic system is likely involved. Aim of the present study was to investigate depressive-like behavior in mice with experimental autoimmune encephalomyelitis (EAE), a model of MS, and its possible link to dopaminergic neurotransmission. Behavioral, amperometric and biochemical experiments were performed to determine the role of inflammation in mood control in EAE. First, we assessed the independence of mood alterations from motor disability during the acute phase of the disease, by showing a depressive-like behavior in EAE mice with mild clinical score and preserved motor skills (mild-EAE). Second, we linked such behavioral changes to the selective increased striatal expression of interleukin-1beta (IL-1β) in a context of mild inflammation and to dopaminergic system alterations. Indeed, in the striatum of EAE mice, we observed an impairment of dopamine (DA) neurotransmission, since DA release was reduced and signaling through DA D1- and D2-like receptors was unbalanced. In conclusion, the present study provides first evidence of the link between the depressive-like behavior and the alteration of dopaminergic system in EAE mice, raising the possibility that IL-1β driven dysfunction of dopaminergic signaling might play a role in mood disturbances also in MS patients.


Journal of Neuroinflammation | 2016

Interaction between interleukin-1β and type-1 cannabinoid receptor is involved in anxiety-like behavior in experimental autoimmune encephalomyelitis

Antonietta Gentile; Diego Fresegna; Alessandra Musella; Helena Sepman; Silvia Bullitta; Francesca De Vito; Roberta Fantozzi; Alessandro Usiello; Mauro Maccarrone; Nicola B. Mercuri; Beat Lutz; Georgia Mandolesi; Diego Centonze

BackgroundMood disorders, including anxiety and depression, are frequently diagnosed in multiple sclerosis (MS) patients, even independently of the disabling symptoms associated with the disease. Anatomical, biochemical, and pharmacological evidence indicates that type-1 cannabinoid receptor (CB1R) is implicated in the control of emotional behavior and is modulated during inflammatory neurodegenerative diseases such as MS and experimental autoimmune encephalomyelitis (EAE).MethodsWe investigated whether CB1R could exert a role in anxiety-like behavior in mice with EAE. We performed behavioral, pharmacological, and electrophysiological experiments to explore the link between central inflammation, mood, and CB1R function in EAE.ResultsWe observed that EAE-induced anxiety was associated with the downregulation of CB1R-mediated control of striatal GABA synaptic transmission and was exacerbated in mice lacking CB1R (CB1R-KO mice). Central blockade of interleukin-1β (IL-1β) reversed the anxiety-like phenotype of EAE mice, an effect associated with the concomitant rescue of dopamine (DA)-regulated spontaneous behavior, and DA-CB1R neurotransmission, leading to the rescue of striatal CB1R sensitivity.ConclusionsOverall, results of the present investigation indicate that synaptic dysfunction linked to CB1R is involved in EAE-related anxiety and motivation-based behavior and contribute to clarify the complex neurobiological mechanisms underlying mood disorders associated to MS.


Frontiers in Cellular Neuroscience | 2015

Exploring the role of microglia in mood disorders associated with experimental multiple sclerosis

Antonietta Gentile; Francesca De Vito; Diego Fresegna; Alessandra Musella; Fabio Buttari; Silvia Bullitta; Georgia Mandolesi; Diego Centonze

Microglia is increasingly recognized to play a crucial role in the pathogenesis of psychiatric diseases. In particular, microglia may be the cellular link between inflammation and behavioral alterations: by releasing a number of soluble factors, among which pro-inflammatory cytokines, that can regulate synaptic activity, thereby leading to perturbation of behavior. In multiple sclerosis (MS), the most common neuroinflammatory disorder affecting young adults, microglia activation and dysfunction may account for mood symptoms, like depression and anxiety, that are often diagnosed in patients even in the absence of motor disability. Behavioral studies in experimental autoimmune encephalomyelitis (EAE), the animal model of MS, have shown that emotional changes occur early in the disease and in correlation to inflammatory mediator and neurotransmitter level alterations. However, such studies lack a full and comprehensive analysis of the role played by microglia in EAE-behavioral syndrome. We review the experimental studies addressing behavioral symptoms in EAE, and propose the study of neuron-glia interaction as a powerful but still poorly explored tool to investigate the burden of microglia in mood alterations associated to MS.


Scientific Reports | 2017

A novel crosstalk within the endocannabinoid system controls GABA transmission in the striatum

Alessandra Musella; Diego Fresegna; Federica Rizzo; A. Gentile; Silvia Bullitta; F. De Vito; Livia Guadalupi; Diego Centonze; Georgia Mandolesi

The N-palmitoylethanolamine (PEA) is an endogenous member of the endocannabinoid system (ECS) with several biological functions, including a neuromodulatory activity in the central nervous system. To shed light on the neuronal function of PEA, we investigated its involvement in the control of both excitatory and inhibitory transmission in the murine striatum, a brain region strongly modulated by the ECS. By means of electrophysiological recordings, we showed that PEA modulates inhibitory synaptic transmission, through activation of GPR55 receptors, promoting a transient increase of GABAergic spontaneous inhibitory postsynaptic current (sIPSC) frequency. The subsequently rundown effect on sIPSC frequency was secondary to the delayed stimulation of presynaptic cannabinoid CB1 receptors (CB1Rs) by the endocannabinoid 2-AG, whose synthesis was stimulated by PEA on postsynaptic neurons. Our results indicate that PEA, acting on GPR55, enhances GABA transmission in the striatum, and triggers a parallel synthesis of 2-AG at the postsynaptic site, that in turn acts in a retrograde manner to inhibit GABA release through the stimulation of presynaptic CB1Rs. This electrophysiological study identifies a previously unrecognized function of PEA and of GPR55, demonstrating that GABAergic transmission is under the control of this compound and revealing that PEA modulates the release of the endocannabinoid 2-AG.


Neurobiology of Disease | 2017

Interferon-γ causes mood abnormalities by altering cannabinoid CB1 receptor function in the mouse striatum

Georgia Mandolesi; Silvia Bullitta; Diego Fresegna; Antonietta Gentile; Francesca De Vito; Ettore Dolcetti; Francesca Romana Rizzo; Georgios Strimpakos; Diego Centonze; Alessandra Musella

Interferon-γ (IFN-γ) has been implicated in the pathogenesis of multiple sclerosis (MS) and in its animal model, experimental autoimmune encephalomyelitis (EAE). The type-1 cannabinoid receptors (CB1Rs) are heavily involved in MS pathophysiology, and a growing body of evidence suggests that mood disturbances reflect specific effects of proinflammatory cytokines on neuronal activity. Here, we investigated whether IFN-γ could exert a role in the anxiety- and depressive-like behavior observed in mice with EAE, and in the modulation of CB1Rs. Anxiety and depression in fact are often diagnosed in MS, and have already been shown to depend on cannabinoid system. We performed biochemical, behavioral and electrophysiological experiments to assess the role of IFN-γ on mood control and on synaptic transmission in mice. Intracerebroventricular delivery of IFN-γ caused a depressive- and anxiety-like behavior in mice, associated with the selective dysfunction of CB1Rs controlling GABA transmission in the striatum. EAE induction was associated with increased striatal expression of IFN-γ, and with CB1R transmission deficits, which were rescued by pharmacological blockade of IFN-γ. IFN-γ was unable to replicate the effects of EAE on excitatory and inhibitory transmission in the striatum, but mimicked the effects of EAE on CB1R function in this brain area. Overall these results indicate that IFN-γ exerts a relevant control on mood, through the modulation of CB1R function. A better understanding of the biological pathways underling the psychological disorders during neuroinflammatory conditions is crucial for developing effective therapeutic strategies.


Neural Plasticity | 2018

Tumor Necrosis Factor and Interleukin-1β Modulate Synaptic Plasticity during Neuroinflammation

Francesca Romana Rizzo; Alessandra Musella; Francesca De Vito; Diego Fresegna; Silvia Bullitta; Valentina Vanni; Livia Guadalupi; Mario Stampanoni Bassi; Fabio Buttari; Georgia Mandolesi; Diego Centonze; Antonietta Gentile

Cytokines are constitutively released in the healthy brain by resident myeloid cells to keep proper synaptic plasticity, either in the form of Hebbian synaptic plasticity or of homeostatic plasticity. However, when cytokines dramatically increase, establishing a status of neuroinflammation, the synaptic action of such molecules remarkably interferes with brain circuits of learning and cognition and contributes to excitotoxicity and neurodegeneration. Among others, interleukin-1β (IL-1β) and tumor necrosis factor (TNF) are the best studied proinflammatory cytokines in both physiological and pathological conditions and have been invariably associated with long-term potentiation (LTP) (Hebbian synaptic plasticity) and synaptic scaling (homeostatic plasticity), respectively. Multiple sclerosis (MS) is the prototypical neuroinflammatory disease, in which inflammation triggers excitotoxic mechanisms contributing to neurodegeneration. IL-β and TNF are increased in the brain of MS patients and contribute to induce the changes in synaptic plasticity occurring in MS patients and its animal model, the experimental autoimmune encephalomyelitis (EAE). This review will introduce and discuss current evidence of the role of IL-1β and TNF in the regulation of synaptic strength at both physiological and pathological levels, in particular speculating on their involvement in the synaptic plasticity changes observed in the EAE brain.


Frontiers in Aging Neuroscience | 2018

Interplay Between Age and Neuroinflammation in Multiple Sclerosis: Effects on Motor and Cognitive Functions

Alessandra Musella; Antonietta Gentile; Francesca Romana Rizzo; Francesca De Vito; Diego Fresegna; Silvia Bullitta; Valentina Vanni; Livia Guadalupi; Mario Stampanoni Bassi; Fabio Buttari; Diego Centonze; Georgia Mandolesi

Aging is one of the main risk factors for the development of many neurodegenerative diseases. Emerging evidence has acknowledged neuroinflammation as potential trigger of the functional changes occurring during normal and pathological aging. Two main determinants have been recognized to cogently contribute to neuroinflammation in the aging brain, i.e., the systemic chronic low-grade inflammation and the decline in the regulation of adaptive and innate immune systems (immunosenescence, ISC). The persistence of the inflammatory status in the brain in turn may cause synaptopathy and synaptic plasticity impairments that underlie both motor and cognitive dysfunctions. Interestingly, such inflammation-dependent synaptic dysfunctions have been recently involved in the pathophysiology of multiple sclerosis (MS). MS is an autoimmune neurodegenerative disease, typically affecting young adults that cause an early and progressive deterioration of both cognitive and motor functions. Of note, recent controlled studies have clearly shown that age at onset modifies prognosis and exerts a significant effect on presenting phenotype, suggesting that aging is a significant factor associated to the clinical course of MS. Moreover, some lines of evidence point to the different impact of age on motor disability and cognitive deficits, being the former most affected than the latter. The precise contribution of aging-related factors to MS neurological disability and the underlying molecular and cellular mechanisms are still unclear. In the present review article, we first emphasize the importance of the neuroinflammatory dependent mechanisms, such as synaptopathy and synaptic plasticity impairments, suggesting their potential exacerbation or acceleration with advancing age in the MS disease. Lastly, we provide an overview of clinical and experimental studies highlighting the different impact of age on motor disability and cognitive decline in MS, raising challenging questions on the putative age-related mechanisms involved.


Nature Reviews Neurology | 2015

Synaptopathy connects inflammation and neurodegeneration in multiple sclerosis

Georgia Mandolesi; Antonietta Gentile; Alessandra Musella; Diego Fresegna; Francesca De Vito; Silvia Bullitta; Helena Sepman; Girolama A. Marfia; Diego Centonze

Collaboration


Dive into the Silvia Bullitta's collaboration.

Top Co-Authors

Avatar

Diego Centonze

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Diego Fresegna

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Georgia Mandolesi

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Antonietta Gentile

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Francesca De Vito

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Francesca Romana Rizzo

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Fabio Buttari

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandro Usiello

Seconda Università degli Studi di Napoli

View shared research outputs
Researchain Logo
Decentralizing Knowledge