Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonino Bruno is active.

Publication


Featured researches published by Antonino Bruno.


Molecular Oncology | 2014

miR181b is induced by the chemopreventive polyphenol curcumin and inhibits breast cancer metastasis via down-regulation of the inflammatory cytokines CXCL1 and -2.

Micol E. Fiori; Ottavia Barbieri; Simonetta Astigiano; Valentina Mirisola; Peter H. Killian; Antonino Bruno; Arianna Pagani; Francesca Rovera; Ulrich Pfeffer; Christian P. Sommerhoff; Douglas M. Noonan; Andreas G. Nerlich; Laura Fontana; Beatrice E. Bachmeier

Chronic inflammation is a major risk factor for the development and metastatic progression of cancer. We have previously reported that the chemopreventive polyphenol Curcumin inhibits the expression of the proinflammatory cytokines CXCL1 and ‐2 leading to diminished formation of breast and prostate cancer metastases. In the present study, we have analyzed the effects of Curcumin on miRNA expression and its correlation to the anti‐tumorigenic properties of this natural occurring polyphenol.


Journal of the National Cancer Institute | 2014

A Think Tank of TINK/TANKs: Tumor-Infiltrating/Tumor-Associated Natural Killer Cells in Tumor Progression and Angiogenesis

Antonino Bruno; Guido Ferlazzo; Adriana Albini; Douglas M. Noonan

Tumor-infiltrating leukocytes are often induced by the cancer microenvironment to display a protumor, proangiogenic phenotype. This “polarization” has been described for several myeloid cells, in particular macrophages. Natural killer (NK) cells represent another population of innate immune cells able to infiltrate tumors. The role of NK in tumor progression and angiogenesis has not yet been fully investigated. Several studies have shown that tumor-infiltrating NK (here referred to as “TINKs”) and tumor-associated NK (altered peripheral NK cells, which here we call “TANKs”) are compromised in their ability to lysew tumor cells. Recent data have suggested that they are potentially protumorigenic and can also acquire a proangiogenic phenotype. Here we review the properties of TINKs and TANKs and compare their activities to that of NK cells endowed with a physiological proangiogenic phenotype, in particular decidual NK cells. We speculate on the potential origins of TINKs and TANKs and on the immune signals involved in their differentiation and polarization. The TINK and TANK phenotype has broad implications in the immune response to tumors, ranging from a deficient control of cancer and cancer stem cells to an altered crosstalk with other relevant players of the immune response, such as dendritic cells, to induction of cancer angiogenesis. With this recently acquired knowledge that has not yet been put into perspective, we point out new potential avenues for therapeutic intervention involving NK cells as a target or an ally in oncology.


Carcinogenesis | 2014

Paradoxic effects of metformin on endothelial cells and angiogenesis

Katiuscia Dallaglio; Antonino Bruno; Alessia Isabella Esposito; Luca Ruggiero; Stefania Orecchioni; Angelica Calleri; Francesco Bertolini; Ulrich Pfeffer; Douglas M. Noonan; Adriana Albini

The biguanide metformin is used in type 2 diabetes management and has gained significant attention as a potential cancer preventive agent. Angioprevention represents a mechanism of chemoprevention, yet conflicting data concerning the antiangiogenic action of metformin have emerged. Here, we clarify some of the contradictory effects of metformin on endothelial cells and angiogenesis, using in vitro and in vivo assays combined with transcriptomic and protein array approaches. Metformin inhibits formation of capillary-like networks by endothelial cells; this effect is partially dependent on the energy sensor adenosine-monophosphate-activated protein kinase (AMPK) as shown by small interfering RNA knockdown. Gene expression profiling of human umbilical vein endothelial cells revealed a paradoxical modulation of several angiogenesis-associated genes and proteins by metformin, with short-term induction of vascular endothelial growth factor (VEGF), cyclooxygenase 2 and CXC chemokine receptor 4 at the messenger RNA level and downregulation of ADAMTS1. Antibody array analysis shows an essentially opposite regulation of numerous angiogenesis-associated proteins in endothelial and breast cancer cells including interleukin-8, angiogenin and TIMP-1, as well as selective regulation of angiopioetin-1, -2, endoglin and others. Endothelial cell production of the cytochrome P450 member CYP1B1 is upregulated by tumor cell supernatants in an AMPK-dependent manner, metformin blocks this effect. Metformin inhibits VEGF-dependent activation of extracellular signal-regulated kinase 1/2, and the inhibition of AMPK activity abrogates this event. Metformin hinders angiogenesis in matrigel pellets in vivo, prevents the microvessel density increase observed in obese mice on a high-fat diet, downregulating the number of white adipose tissue endothelial precursor cells. Our data show that metformin has an antiangiogenic activity in vitro and in vivo associated with a contradictory short-term enhancement of pro-angiogenic mediators, as well as with a differential regulation in endothelial and breast cancer cells.


PLOS ONE | 2015

Effects of 5-Fluorouracil on Morphology, Cell Cycle, Proliferation, Apoptosis, Autophagy and ROS Production in Endothelial Cells and Cardiomyocytes

Chiara Focaccetti; Antonino Bruno; Elena Magnani; Desiree Bartolini; Elisa Principi; Katiuscia Dallaglio; Eraldo Bucci; Giovanna Finzi; Fausto Sessa; Douglas M. Noonan; Adriana Albini

Antimetabolites are a class of effective anticancer drugs interfering in essential biochemical processes. 5-Fluorouracil (5-FU) and its prodrug Capecitabine are widely used in the treatment of several solid tumors (gastro-intestinal, gynecological, head and neck, breast carcinomas). Therapy with fluoropyrimidines is associated with a wide range of adverse effects, including diarrhea, dehydration, abdominal pain, nausea, stomatitis, and hand-foot syndrome. Among the 5-FU side effects, increasing attention is given to cardiovascular toxicities induced at different levels and intensities. Since the mechanisms related to 5-FU-induced cardiotoxicity are still unclear, we examined the effects of 5-FU on primary cell cultures of human cardiomyocytes and endothelial cells, which represent two key components of the cardiovascular system. We analyzed at the cellular and molecular level 5-FU effects on cell proliferation, cell cycle, survival and induction of apoptosis, in an experimental cardioncology approach. We observed autophagic features at the ultrastructural and molecular levels, in particular in 5-FU exposed cardiomyocytes. Reactive oxygen species (ROS) elevation characterized the endothelial response. These responses were prevented by a ROS scavenger. We found induction of a senescent phenotype on both cell types treated with 5-FU. In vivo, in a xenograft model of colon cancer, we showed that 5-FU treatment induced ultrastructural changes in the endothelium of various organs. Taken together, our data suggest that 5-FU can affect, both at the cellular and molecular levels, two key cell types of the cardiovascular system, potentially explaining some manifestations of 5-FU-induced cardiovascular toxicity.


Connective Tissue Research | 2015

Cancer stem cells and the tumor microenvironment: interplay in tumor heterogeneity.

Adriana Albini; Antonino Bruno; Cristina Gallo; Giorgio Pajardi; Douglas M. Noonan; Katiuscia Dallaglio

Abstract Tumor cells able to recapitulate tumor heterogeneity have been tracked, isolated and characterized in different tumor types, and are commonly named Cancer Stem Cells or Cancer Initiating Cells (CSC/CIC). CSC/CIC are disseminated in the tumor mass and are resistant to anti-cancer therapies and adverse conditions. They are able to divide into another stem cell and a “proliferating” cancer cell. They appear to be responsible for disease recurrence and metastatic dissemination even after apparent eradication of the primary tumor. The modulation of CSC/CIC activities by the tumor microenvironment (TUMIC) is still poorly known. CSC/CIC may mutually interact with the TUMIC in a special and unique manner depending on the TUMIC cells or proteins encountered. The TUMIC consists of extracellular matrix components as well as cellular players among which endothelial, stromal and immune cells, providing and responding to signals to/from the CSC/CIC. This interplay can contribute to the mechanisms through which CSC/CIC may reside in a dormant state in a tissue for years, later giving rise to tumor recurrence or metastasis in patients. Different TUMIC components, including the connective tissue, can differentially activate CIC/CSC in different areas of a tumor and contribute to the generation of cancer heterogeneity. Here, we review possible networking activities between the different components of the tumor microenvironment and CSC/CIC, with a focus on its role in tumor heterogeneity and progression. We also summarize novel therapeutic options that could target both CSC/CIC and the microenvironment to elude resistance mechanisms activated by CSC/CIC, responsible for disease recurrence and metastases.


Frontiers in Oncology | 2014

Orchestration of angiogenesis by immune cells.

Antonino Bruno; Arianna Pagani; Laura Pulze; Adriana Albini; Katiuscia Dallaglio; M M Douglas Noonan; Lorenzo Mortara

It is widely accepted that the tumor microenvironment (TUMIC) plays a major role in cancer and is indispensable for tumor progression. The TUMIC involves many “players” going well beyond the malignant-transformed cells, including stromal, immune, and endothelial cells (ECs). The non-malignant cells can acquire tumor-promoting functions during carcinogenesis. In particular, these cells can “orchestrate” the “symphony” of the angiogenic switch, permitting the creation of new blood vessels that allows rapid expansion and progression toward malignancy. Considerable attention within the context of tumor angiogenesis should focus not only on the ECs, representing a fundamental unit, but also on immune cells and on the inflammatory tumor infiltrate. Immune cells infiltrating tumors typically show a tumor-induced polarization associated with attenuation of anti-tumor functions and generation of pro-tumor activities, among these angiogenesis. Here, we propose a scenario suggesting that the angiogenic switch is an immune switch arising from the pro-angiogenic polarization of immune cells. This view links immunity, inflammation, and angiogenesis to tumor progression. Here, we review the data in the literature and seek to identify the “conductors” of this “orchestra.” We also suggest that interrupting the immune → inflammation → angiogenesis → tumor progression process can delay or prevent tumor insurgence and malignant disease.


Journal of Medicinal Chemistry | 2015

N-O-Isopropyl Sulfonamido-Based Hydroxamates as Matrix Metalloproteinase Inhibitors: Hit Selection and in Vivo Antiangiogenic Activity.

Elisa Nuti; Cristina Gallo; Antonino Bruno; Barbara Bassani; Caterina Camodeca; Tiziano Tuccinardi; Laura Vera; Elisabetta Orlandini; Susanna Nencetti; Enrico A. Stura; Adriano Martinelli; Vincent Dive; Adriana Albini; Armando Rossello

Matrix metalloproteinases (MMPs) have been shown to be involved in tumor-induced angiogenesis. In particular, MMP-2, MMP-9, and MMP-14 have been reported to be crucial for tumor angiogenesis and the formation of metastasis, thus becoming attractive targets in cancer therapy. Here, we report our optimization effort to identify novel N-isopropoxy-arylsulfonamide hydroxamates with improved inhibitory activity toward MMP-2, MMP-9, and MMP-14 with respect to the previously discovered compound 1. A new series of hydroxamates was designed, synthesized, and tested for their antiangiogenic activity using in vitro assays with human umbilical vein endothelial cells (HUVECs). A nanomolar MMP-2, MMP-9, and MMP-14 inhibitor was identified, compound 3, able to potently inhibit angiogenesis in vitro and also in vivo in the matrigel sponge assay in mice. Finally, X-ray crystallographic and docking studies were conducted for compound 3 in order to investigate its binding mode to MMP-9 and MMP-14.


Cancer treatment and research | 2014

Inflammatory Angiogenesis and the Tumor Microenvironment as Targets for Cancer Therapy and Prevention

Antonino Bruno; Arianna Pagani; Elena Magnani; Teresa Rossi; Douglas M. Noonan; Adriana Albini

In addition to aberrant transformed cells, tumors are tissues that contain host components, including stromal cells, vascular cells (ECs) and their precursors, and immune cells. All these constituents interact with each other at the cellular and molecular levels, resulting in the production of an intricate and heterogeneous complex of cells and matrix defined as the tumor microenvironment. Several pathways involved in these interactions have been investigated both in pathological and physiological scenarios, and diverse molecules are currently targets of chemotherapeutic and preventive drugs. Many phytochemicals and their derivatives show the ability to inhibit tumor progression, angiogenesis, and metastasis, exerting effects on the tumor microenvironment. In this review, we will outline the principal players and mechanisms involved in the tumor microenvironment network and we will discuss some interesting compounds aimed at interrupting these interactions and blocking tumor insurgence and progression. The considerations provided will be crucial for the design of new preventive approaches to the reduction in cancer risk that need to be applied to large populations composed of apparently healthy individuals.


International Journal of Nanomedicine | 2015

Environmental impact of multi-wall carbon nanotubes in a novel model of exposure: systemic distribution, macrophage accumulation, and amyloid deposition.

Adriana Albini; Arianna Pagani; Laura Pulze; Antonino Bruno; Elisa Principi; Terenzio Congiu; Elisabetta Gini; Annalisa Grimaldi; Barbara Bassani; Silvio De Flora; Magda de Eguileor; Douglas M. Noonan

Carbon nanotubes (CNTs) have been extensively investigated and employed for industrial use because of their peculiar physical properties, which make them ideal for many industrial applications. However, rapid growth of CNT employment raises concerns about the potential risks and toxicities for public health, environment, and workers associated with the manufacture and use of these new materials. Here we investigate the main routes of entry following environmental exposure to multi-wall CNTs (MWCNTs; currently the most widely used in industry). We developed a novel murine model that could represent a surrogate of a workplace exposure to MWCNTs. We traced the localization of MWCNTs and their possible role in inducing an innate immune response, inflammation, macrophage recruitment, and inflammatory conditions. Following environmental exposure of CD1 mice, we observed that MWCNTs rapidly enter and disseminate in the organism, initially accumulating in lungs and brain and later reaching the liver and kidney via the bloodstream. Since recent experimental studies show that CNTs are associated with the aggregation process of proteins associated with neurodegenerative diseases, we investigated whether MWCNTs are able to induce amyloid fibril production and accumulation. Amyloid deposits in spatial association with macrophages and MWCNT aggregates were found in the brain, liver, lungs, and kidneys of exposed animals. Our data suggest that accumulation of MWCNTs in different organs is associated with inflammation and amyloid accumulation. In the brain, where we observed rapid accumulation and amyloid fibril deposition, exposure to MWCNTs might enhance progression of neurodegenerative and other amyloid-related diseases. Our data highlight the conclusion that, in a novel rodent model of exposure, MWCNTs may induce macrophage recruitment, activation, and amyloid deposition, causing potential damage to several organs.


Clinica Chimica Acta | 2015

A PSA-guided approach for a better diagnosis of prostatic adenocarcinoma based on MALDI profiling and peptide identification

Chiara Fania; Ilaria Sogno; Michele Vasso; Enrica Torretta; Roberta Leone; Antonino Bruno; Paolo Consonni; Adriana Albini; Cecilia Gelfi

BACKGROUND Prostate cancer (PCa) is the second cause of mortality in men worldwide. The prostate-specific antigen (PSA) test is routinely adopted in diagnosis; nevertheless more reliable biomarkers are continuously under investigation by monitoring the release of molecules into the bloodstream. The serum protein profiles appear to provide cancer-specific fingerprints that help to discriminate patients (especially with low PSA level) from controls, improving the performance of existing clinical tests. METHODS Samples from healthy controls and PCa patients with low (≤4 ng/mL) and high PSA (>4 ng/mL) levels were analyzed by MALDI profiling, and by a multi fractionation approach coupled to ESI-MS for peaks identification. RESULTS MALDI profiling achieved to detect 10 and 14 changed peaks (p-value <0.05), respectively, in PCa patients with low and high PSA versus controls. In particular, a peak identified as C3f fragment, resulted overexpressed in low PSA PCa patients. CONCLUSIONS PSA test, coupled to MALDI profiling, is able to detect changes, specifically related to PCa, in low molecular weight protein range. Furthermore, for the first time in prostate cancer research, the identification and quantification of the small peptide C3f appears to be relevant for the detection of false negatives, providing an additive diagnostic power to PSA (p<0.01) and suggesting its use in clinical tests.

Collaboration


Dive into the Antonino Bruno's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adriana Albini

National Cancer Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Albini

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge