Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas M. Noonan is active.

Publication


Featured researches published by Douglas M. Noonan.


Journal of the National Cancer Institute | 2010

Cardiotoxicity of Anticancer Drugs: The Need for Cardio-Oncology and Cardio-Oncological Prevention

Adriana Albini; Giuseppina Pennesi; Francesco Donatelli; Rosaria Cammarota; Silvio De Flora; Douglas M. Noonan

Due to the aging of the populations of developed countries and a common occurrence of risk factors, it is increasingly probable that a patient may have both cancer and cardiovascular disease. In addition, cytotoxic agents and targeted therapies used to treat cancer, including classic chemotherapeutic agents, monoclonal antibodies that target tyrosine kinase receptors, small molecule tyrosine kinase inhibitors, and even antiangiogenic drugs and chemoprevention agents such as cyclooxygenase-2 inhibitors, all affect the cardiovascular system. One of the reasons is that many agents reach targets in the microenvironment and do not affect only the tumor. Combination therapy often amplifies cardiotoxicity, and radiotherapy can also cause heart problems, particularly when combined with chemotherapy. In the past, cardiotoxic risk was less evident, but it is increasingly an issue, particularly with combination therapy and adjuvant therapy. Todays oncologists must be fully aware of cardiovascular risks to avoid or prevent adverse cardiovascular effects, and cardiologists must now be ready to assist oncologists by performing evaluations relevant to the choice of therapy. There is a need for cooperation between these two areas and for the development of a novel discipline, which could be termed cardio-oncology or onco-cardiology. Here, we summarize the potential cardiovascular toxicities for a range of cancer chemotherapeutic and chemopreventive agents and emphasize the importance of evaluating cardiovascular risk when patients enter into trials and the need to develop guidelines that include collateral effects on the cardiovascular system. We also discuss mechanistic pathways and describe several potential protective agents that could be administered to patients with occult or overt risk for cardiovascular complications.


Clinical & Experimental Metastasis | 2002

Tumors and inflammatory infiltrates: Friends or foes?

Claudio Brigati; Douglas M. Noonan; Adriana Albini; Roberto Benelli

The recognition of a role for inflammation in the natural history of a tumor has a long record, stretching from the mid-19th century. From the times of Virkow, who postulated that cancer originates from inflamed tissues, to Metchnikoff and many others, this field has continued to excite (and divide) the scientific community. The question as to whether the inflammatory infiltrate helps or hinders tumors is still open. In a sense, modern molecular biology has, if anything, worsened this dualism, and the literature on this issue shows a plethora of conflicting reports. We would like to provide another contribution to this topic, which was the subject of a recent brilliant review (Balkwill F and Mantovani A. Lancet 2001; 357: 539–45 [1]), by focussing more specifically to the relation between inflammation and tumor invasion and how this could drive rational therapeutic approaches.


Cancer and Metastasis Reviews | 2008

Inflammation, inflammatory cells and angiogenesis: decisions and indecisions

Douglas M. Noonan; Andrea De Lerma Barbaro; Nicola Vannini; Lorenzo Mortara; Adriana Albini

Endothelial-immune cell cross-talk goes well beyond leukocyte and lymphocyte trafficking, since immune cells are able to intimately regulate vessel formation and function. Here we review the evidence that most immune cells are capable of polarization towards a dichotomous activity either inducing or inhibiting angiogenesis. In addition to the well-known roles of tumor associated macrophages, we find that neutrophils, myeloid-derived suppressor and dendritic cells clearly have the potential for influencing tumor angiogenesis. Further, the physiological functions of NK cells suggest that these cells may also show a potentially important role in pro- or anti-angiogenesis regulation within the tumor microenvironment. At the same time many angiogenic factors influence the activity and function of immune cells that generally favor tumor survival and tolerance. Thus the immune system itself represents a major pharmaceutical target and links angiogenesis inhibition to immunotherapy.


Oncogene | 2002

The HtrA1 serine protease is down-regulated during human melanoma progression and represses growth of metastatic melanoma cells

Alfonso Baldi; Antonio De Luca; Monica Morini; Tullio Battista; Armando Felsani; Feliciano Baldi; Caterina Catricalà; Ada Amantea; Douglas M. Noonan; Adriana Albini; Pier Giorgio Natali; Daniela Lombardi; Marco G. Paggi

Differential gene expression of cell lines derived from a malignant melanoma or its autologous lymph node metastasis using cDNA arrays indicated down-regulation of PRSS11, a gene encoding the serine protease HtrA1, a homolog of the Escherichia coli protease HtrA, in the metastatic line. Stable PRSS11 overexpression in the metastatic cell line strongly inhibited proliferation, chemoinvasion and Nm23-H1 protein expression in vitro, as well as cell growth in vivo in nu/nu mice. A polyclonal anti-HtrA1 serum demonstrated a significantly higher expression in primary melanomas when compared to unrelated metastatic lesions in a human melanoma tissue array, and down-modulation of HtrA1 expression in autologous lymph node melanoma metastases in seven out of 11 cases examined. These results suggest that down-regulation of PRSS11 and HtrA1 expression may represent an indicator of melanoma progression.


Journal of Immunology | 2004

CXCL1/Macrophage Inflammatory Protein-2-Induced Angiogenesis In Vivo Is Mediated by Neutrophil-Derived Vascular Endothelial Growth Factor-A

Patrizia Scapini; Monica Morini; Cristina Tecchio; Simona Minghelli; Emma Di Carlo; Elena Tanghetti; Adriana Albini; Clifford A. Lowell; Giorgio Berton; Douglas M. Noonan; Marco A. Cassatella

The angiogenic activity of CXC-ELR+ chemokines, including CXCL8/IL-8, CXCL1/macrophage inflammatory protein-2 (MIP-2), and CXCL1/growth-related oncogene-α in the Matrigel sponge angiogenesis assay in vivo, is strictly neutrophil dependent, as neutrophil depletion of the animals completely abrogates the angiogenic response. In this study, we demonstrate that mice deficient in the src family kinases, Hck and Fgr (hck−/−fgr−/−), are unable to develop an angiogenic response to CXCL1/MIP-2, although they respond normally to vascular endothelial growth factor-A (VEGF-A). Histological examination of the CXCL1/MIP-2-containing Matrigel implants isolated from wild-type or hck−/−fgr−/− mice showed the presence of an extensive neutrophil infiltrate, excluding a defective neutrophil recruitment into the Matrigel sponges. Accordingly, neutrophils from hck−/−fgr−/− mice normally migrated and released gelatinase B in response to CXCL1/MIP-2 in vitro, similarly to wild-type neutrophils. However, unlike wild-type neutrophils, those from hck−/−fgr−/− mice were completely unable to release VEGF-A upon stimulation with CXCL1/MIP-2. Furthermore, neutralizing anti-VEGF-A Abs abrogated the angiogenic response to CXCL1/MIP-2 in wild-type mice and CXCL1/MIP-2 induced angiogenesis in the chick embryo chorioallantoic membrane assay, indicating that neutrophil-derived VEGF-A is a major mediator of CXCL1/MIP-2-induced angiogenesis. Finally, in vitro kinase assays confirmed that CXCL1/MIP-2 activates Hck and Fgr in murine neutrophils. Taken together, these data demonstrate that CXCL1/MIP-2 leads to recruitment of neutrophils that, in turn, release biologically active VEGF-A, resulting in angiogenesis in vivo. Our observations delineate a novel mechanism by which CXCL1/MIP-2 induces neutrophil-dependent angiogenesis in vivo.


Journal of Biological Chemistry | 1997

Interaction of HIV-1 Tat Protein with Heparin ROLE OF THE BACKBONE STRUCTURE, SULFATION, AND SIZE

Marco Rusnati; Daniela Coltrini; Pasqua Oreste; Giorgio Zoppetti; Adriana Albini; Douglas M. Noonan; Fabrizio d'Adda di Fagagna; Mauro Giacca; Marco Presta

Human immunodeficiency virus type 1 (HIV-1) Tat protein is released from infected cells. Extracellular Tat enters the cell where it stimulates the transcriptional activity of HIV-long terminal repeat (LTR) and of endogenous genes. Heparin modulates the angiogenic (Albini, A., Benelli, R., Presta, M., Rusnati, M., Ziche, M., Rubartelli, A., Paglialunga, G., Bussolino, F., and Noonan, D. (1996) Oncogene 12, 289-297) and transcriptional (Mann, D. A., and Frankel, A. D. (1991) EMBO J. 10, 1733-1739) activity of extracellular Tat. Here we demonstrate that heparin binds specifically to recombinant HIV-1 Tat produced as glutathione S-transferase (GST) fusion protein and immobilized on glutathione-agarose beads. Heparin and heparan sulfate (HS), but not dermatan sulfate, chondroitin sulfates A and C, hyaluronic acid, and K5 polysaccharide, competed with 3H-labeled heparin for binding to immobilized GST-Tat and inhibited HIV-LTR transactivation induced by extracellular GST-Tat. Selective 2-O-, 6-O-, total-O-desulfation, or N-desulfation/N-acetylation dramatically reduced the capacity of heparin to bind GST-Tat. Totally-O-desulfated and 2-O-desulfated heparins also showed a reduced capacity to inhibit the transactivating activity of GST-Tat. Very low molecular weight heparins showed a significant decrease in their capacity to bind GST-Tat and to inhibit its LTR transactivating activity when compared with conventional 13.6-kDa heparin. However, when 3.0-kDa heparin was affinity chromatographed on immobilized GST-Tat to isolate binding and non-binding subfractions, the Tat-bound fraction was ≥1,000 times more potent than the unbound fraction in inhibiting the transactivating activity of GST-Tat. The results demonstrate that Tat interacts in a size-dependent manner with heparin/HS and that high affinity Tat-heparin interaction requires at least some 2-O-, 6-O-, and N-positions to be sulfated. The Tat binding activity of the glycosaminoglycans tested correlates with their capacity to affect the transactivating activity of extracellular Tat, indicating the possibility to design specific heparin/HS-like structures with Tat-antagonist activity.


Nature Reviews Clinical Oncology | 2012

Cancer prevention by targeting angiogenesis

Adriana Albini; Francesca Tosetti; Vincent W. Li; Douglas M. Noonan; William W. Li

Healthy individuals can harbour microscopic tumours and dysplastic foci in different organs in an undetectable and asymptomatic state for many years. These lesions do not progress in the absence of angiogenesis or inflammation. Targeting both processes before clinical manifestation can prevent tumour growth and progression. Angioprevention is a chemoprevention approach that interrupts the formation of new blood vessels when tumour cell foci are in an indolent state. Many efficacious chemopreventive drugs function by preventing angiogenesis in the tumour microenvironment. Blocking the vascularization of incipient tumours should maintain a dormancy state such that neoplasia or cancer exist without disease. The current limitations of antiangiogenic cancer therapy may well be related to the use of antiangiogenic agents too late in the disease course. In this Review, we suggest mechanisms and strategies for using antiangiogenesis agents in a safe, preventive clinical angioprevention setting, proposing different levels of clinical angioprevention according to risk, and indicate potential drugs to be employed at these levels. Finally, angioprevention may go well beyond cancer in the prevention of a range of chronic disorders where angiogenesis is crucial, including different forms of inflammatory or autoimmune diseases, ocular disorders, and neurodegeneration.


The FASEB Journal | 2001

Neutrophils as a key cellular target for angiostatin: implications for regulation of angiogenesis and inflammation

Roberto Benelli; Monica Morini; Fabio Carrozzino; Nicoletta Ferrari; Simona Minghelli; Leonardo Santi; Marco Cassatella; Douglas M. Noonan; Adriana Albini

Angiostatin effectively blocks tumor angiogenesis through still poorly understood mechanisms. Given the close association between immune and vascular regulation, we investigated the effects of angiostatin on angiogenesis‐associated leukocytes. Angiostatin inhibited the migration of monocytes and, even more markedly, neutrophils. Angiostatin blocked chemotaxis of neutrophils to CXCR2 chemokine receptor agonists (IL‐8, MIP‐2, and GROα), formyl‐Met‐Leu‐Phe (fMLP), and 12‐O‐tetradecanoylphorbol 13‐acetate, and repressed fMLP‐induced mitochondrial activity. Two different angiostatin forms (kringles 1–4 and 1–3) were effective, whereas whole plasminogen had no effect. IL‐8, MIP‐2, and GROα induced intense angiogenic reactions in vivo, but no angiogenic response to these factors was observed in neutropenic mice, demonstrating an essential role for neutrophils. Angiostatin potently inhibited chemokine‐induced angiogenesis in vivo, and consistent with in vitro observations, both angiostatin forms were active and whole plasminogen had little effect. Angiostatin inhibition of angiogenesis in vivo was accompanied by a striking reduction in the number of recruited leukocytes. In vivo, the inflammatory agent lipopolysaccharide also induced extensive leukocyte infiltration and angiogenesis that were blocked by angiostatin. Neutrophils expressed mRNAs for ATP synthase and angiomotin, two known angiostatin receptors. These data show that angiostatin directly inhibits neutrophil migration and neutrophil‐mediated angiogenesis and indicate that angiostatin might inhibit inflammation.


Clinical Cancer Research | 2004

Mechanisms of Inhibition of Tumor Angiogenesis and Vascular Tumor Growth by Epigallocatechin-3-Gallate

Gianfranco Fassina; Roberta Venè; Monica Morini; Simona Minghelli; Roberto Benelli; Douglas M. Noonan; Adriana Albini

Purpose: Green tea consumption has been linked to a reduced occurrence of some tumor types. Current data indicate that the principal mediator of this chemopreventive effect is epigallocatechin-3-gallate (EGCG), the most abundant polyphenol found in dried tea leaves. Here, we examined the effects of this compound on the two key cell populations typically involved in tumor growth: tumor cells and endothelial cells. Experimental Design: The effects of green tea and EGCG were tested in a highly vascular Kaposi’s sarcoma (KS) tumor model and on endothelial cells in a panel of in vivo and in vitro assays. Results: EGCG inhibited KS-IMM cell growth and endothelial cell growth, chemotaxis, and invasion over a range of doses; high concentrations also induced tumor cell apoptosis. EGCG inhibited the metalloprotease-mediated gelatinolytic activity produced by endothelial cell supernatants and the formation of new capillary-like structures in vitro. Green tea or purified EGCG when administered to mice in the drinking water inhibited angiogenesis in vivo in the Matrigel sponge model and restrained KS tumor growth. Histological analysis of the tumors were consistent with an anti-angiogenic activity of EGCG and green tea. Conclusions: These data suggest that the green tea gallate or its derivatives may find use in the prevention and treatment of vascular tumors in a chemoprevention or adjuvant setting.


Journal of Leukocyte Biology | 2003

Phenotypic and functional analysis of T cells homing into the CSF of subjects with inflammatory diseases of the CNS.

Debora Giunti; Giovanna Borsellino; Roberto Benelli; Monica Marchese; Elisabetta Capello; M. T. Valle; Enrico Pedemonte; Douglas M. Noonan; Adriana Albini; Giorgio Bernardi; Giovanni Luigi Mancardi; Luca Battistini; Antonio Uccelli

The recruitment of lymphocytes across the blood brain barrier (BBB) is mediated by adhesion molecules and chemokines. The expression of activation markers and of chemokine receptors on T cells homing to the nervous system (NS) may help define their functional state. In the cerebrospinal fluid (CSF) of subjects with inflammatory neurological diseases (IND), including multiple sclerosis, we observed an increased number of T cells coexpressing CXCR3 and CCR5 as well as T cells with a CD45RO+ CCR7+ CD27+ memory phenotype. A subset of CCR7+ T cells coexpressed CXCR3 and CCR5. We also detected an increased number of interferon‐γ‐producing T cells in the CSF compared with peripheral blood, mostly but not exclusively in the CD45RO+ CCR7− CD27− compartment. T helper 1 (Th1) clones, established from the CSF of individuals with IND and from a healthy subject, similarly migrated to CXCL10, CXCL12, and CCL5. CXCL10, CXCL12, and CCL19 were increased in the CSF of individuals with neuroinflammation. These findings suggest that CSF is enriched in Th1‐polarized memory T cells capable of differentiating into effector cells upon antigen encounter. These cells are recruited into the CSF by inducible chemokines. Thus, CSF represents a transitional station for T cells trafficking to and from the NS.

Collaboration


Dive into the Douglas M. Noonan's collaboration.

Top Co-Authors

Avatar

Adriana Albini

National Cancer Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberto Benelli

National Cancer Research Institute

View shared research outputs
Top Co-Authors

Avatar

Monica Morini

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulrich Pfeffer

National Cancer Research Institute

View shared research outputs
Top Co-Authors

Avatar

Nicoletta Ferrari

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesca Tosetti

National Cancer Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge