Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara Bassani is active.

Publication


Featured researches published by Barbara Bassani.


Journal of Medicinal Chemistry | 2015

N-O-Isopropyl Sulfonamido-Based Hydroxamates as Matrix Metalloproteinase Inhibitors: Hit Selection and in Vivo Antiangiogenic Activity.

Elisa Nuti; Cristina Gallo; Antonino Bruno; Barbara Bassani; Caterina Camodeca; Tiziano Tuccinardi; Laura Vera; Elisabetta Orlandini; Susanna Nencetti; Enrico A. Stura; Adriano Martinelli; Vincent Dive; Adriana Albini; Armando Rossello

Matrix metalloproteinases (MMPs) have been shown to be involved in tumor-induced angiogenesis. In particular, MMP-2, MMP-9, and MMP-14 have been reported to be crucial for tumor angiogenesis and the formation of metastasis, thus becoming attractive targets in cancer therapy. Here, we report our optimization effort to identify novel N-isopropoxy-arylsulfonamide hydroxamates with improved inhibitory activity toward MMP-2, MMP-9, and MMP-14 with respect to the previously discovered compound 1. A new series of hydroxamates was designed, synthesized, and tested for their antiangiogenic activity using in vitro assays with human umbilical vein endothelial cells (HUVECs). A nanomolar MMP-2, MMP-9, and MMP-14 inhibitor was identified, compound 3, able to potently inhibit angiogenesis in vitro and also in vivo in the matrigel sponge assay in mice. Finally, X-ray crystallographic and docking studies were conducted for compound 3 in order to investigate its binding mode to MMP-9 and MMP-14.


International Journal of Nanomedicine | 2015

Environmental impact of multi-wall carbon nanotubes in a novel model of exposure: systemic distribution, macrophage accumulation, and amyloid deposition.

Adriana Albini; Arianna Pagani; Laura Pulze; Antonino Bruno; Elisa Principi; Terenzio Congiu; Elisabetta Gini; Annalisa Grimaldi; Barbara Bassani; Silvio De Flora; Magda de Eguileor; Douglas M. Noonan

Carbon nanotubes (CNTs) have been extensively investigated and employed for industrial use because of their peculiar physical properties, which make them ideal for many industrial applications. However, rapid growth of CNT employment raises concerns about the potential risks and toxicities for public health, environment, and workers associated with the manufacture and use of these new materials. Here we investigate the main routes of entry following environmental exposure to multi-wall CNTs (MWCNTs; currently the most widely used in industry). We developed a novel murine model that could represent a surrogate of a workplace exposure to MWCNTs. We traced the localization of MWCNTs and their possible role in inducing an innate immune response, inflammation, macrophage recruitment, and inflammatory conditions. Following environmental exposure of CD1 mice, we observed that MWCNTs rapidly enter and disseminate in the organism, initially accumulating in lungs and brain and later reaching the liver and kidney via the bloodstream. Since recent experimental studies show that CNTs are associated with the aggregation process of proteins associated with neurodegenerative diseases, we investigated whether MWCNTs are able to induce amyloid fibril production and accumulation. Amyloid deposits in spatial association with macrophages and MWCNT aggregates were found in the brain, liver, lungs, and kidneys of exposed animals. Our data suggest that accumulation of MWCNTs in different organs is associated with inflammation and amyloid accumulation. In the brain, where we observed rapid accumulation and amyloid fibril deposition, exposure to MWCNTs might enhance progression of neurodegenerative and other amyloid-related diseases. Our data highlight the conclusion that, in a novel rodent model of exposure, MWCNTs may induce macrophage recruitment, activation, and amyloid deposition, causing potential damage to several organs.


Clinical & Developmental Immunology | 2018

Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders?

Luca Parisi; Elisabetta Gini; Denisa Baci; Marco Tremolati; Matteo Fanuli; Barbara Bassani; Giampietro Farronato; Antonino Bruno; Lorenzo Mortara

Macrophages are key cellular components of the innate immunity, acting as the main player in the first-line defence against the pathogens and modulating homeostatic and inflammatory responses. Plasticity is a major feature of macrophages resulting in extreme heterogeneity both in normal and in pathological conditions. Macrophages are not homogenous, and they are generally categorized into two broad but distinct subsets as either classically activated (M1) or alternatively activated (M2). However, macrophages represent a continuum of highly plastic effector cells, resembling a spectrum of diverse phenotype states. Induction of specific macrophage functions is closely related to the surrounding environment that acts as a relevant orchestrator of macrophage functions. This phenomenon, termed polarization, results from cell/cell, cell/molecule interaction, governing macrophage functionality within the hosting tissues. Here, we summarized relevant cellular and molecular mechanisms driving macrophage polarization in “distant” pathological conditions, such as cancer, type 2 diabetes, atherosclerosis, and periodontitis that share macrophage-driven inflammation as a key feature, playing their dual role as killers (M1-like) and/or builders (M2-like). We also dissect the physio/pathological consequences related to macrophage polarization within selected chronic inflammatory diseases, placing polarized macrophages as a relevant hallmark, putative biomarkers, and possible target for prevention/therapy.


Oncotarget | 2016

Hop derived flavonoid xanthohumol inhibits endothelial cell functions via AMPK activation

Cristina Gallo; Katiuscia Dallaglio; Barbara Bassani; Teresa Rossi; Armando Rossello; Douglas M. Noonan; Gabriele D'Uva; Antonino Bruno; Adriana Albini

Angiogenesis, a process characterized by the formation of new blood vessels from pre-existing ones, is a crucial step in tumor growth and dissemination. Recently, increased attention has been addressed to the ability of flavonoids to prevent cancer by suppressing angiogenesis, strategy that we named “angioprevention”. Several natural compounds exert their anti-tumor properties by activating 5′ adenosine monophosphate-activated protein kinase (AMPK), a key regulator of metabolism in cancer cells. Drugs with angiopreventive activities, in particular metformin, regulate AMPK in endothelial cells. Here we investigated the involvement of AMPK in the anti-angiogenic effects of xanthohumol (XN), the major prenylated flavonoid of the hop plant, and mechanisms of action. The anti-angiogenic activity of XN was more potent than epigallocatechin-3-gallate (EGCG). Treatment of endothelial cells with XN led to increased AMPK phosphorylation and activity. Functional studies using biochemical approaches confirmed that AMPK mediates XN anti-angiogenic activity. AMPK activation by XN was mediated by CAMMKβ, but not LKB1. Analysis of the downstream mechanisms showed that XN-induced AMPK activation reduced nitric oxide (NO) levels in endothelial cells by decreasing eNOS phosphorylation. Finally, AKT pathway was inactivated by XN as part of its anti-angiogenic activity, but independently from AMPK, suggesting that these two signaling pathways proceed autonomously. Our study dissects the molecular mechanism by which XN exerts its potent anti-angiogenic activity, pointing out AMPK as a crucial signal transducer.


Clinical & Developmental Immunology | 2017

Natural Killer Cells in the Orchestration of Chronic Inflammatory Diseases

Luca Parisi; Barbara Bassani; Marco Tremolati; Elisabetta Gini; Giampietro Farronato; Antonino Bruno

Inflammation, altered immune cell phenotype, and functions are key features shared by diverse chronic diseases, including cardiovascular, neurodegenerative diseases, diabetes, metabolic syndrome, and cancer. Natural killer cells are innate lymphoid cells primarily involved in the immune system response to non-self-components but their plasticity is largely influenced by the pathological microenvironment. Altered NK phenotype and function have been reported in several pathological conditions, basically related to impaired or enhanced toxicity. Here we reviewed and discussed the role of NKs in selected, different, and “distant” chronic diseases, cancer, diabetes, periodontitis, and atherosclerosis, placing NK cells as crucial orchestrator of these pathologic conditions.


Clinical and Experimental Immunology | 2016

NET amyloidogenic backbone in human activated neutrophils

Laura Pulze; Barbara Bassani; Elisabetta Gini; P. D'Antona; Annalisa Grimaldi; Alessandra Luini; Franca Marino; Douglas M. Noonan; Gianluca Tettamanti; Roberto Valvassori; M. de Eguileor

Activated human neutrophils produce a fibrillar DNA network [neutrophil extracellular traps (NETs)] for entrapping and killing bacteria, fungi, protozoa and viruses. Our results suggest that the neutrophil extracellular traps show a resistant amyloidogenic backbone utilized for addressing reputed proteins and DNA against the non‐self. The formation of amyloid fibrils in neutrophils is regulated by the imbalance of reactive oxygen species (ROS) in the cytoplasm. The intensity and source of the ROS signal is determinant for promoting stress‐associated responses such as amyloidogenesis and closely related events: autophagy, exosome release, activation of the adrenocorticotrophin hormone/α‐melanocyte‐stimulating hormone (ACTH/α‐MSH) loop and synthesis of specific cytokines. These interconnected responses in human activated neutrophils, that have been evaluated from a morphofunctional and quantitative viewpoint, represent primitive, but potent, innate defence mechanisms. In invertebrates, circulating phagocytic immune cells, when activated, show responses similar to those described previously for activated human neutrophils. Invertebrate cells within endoplasmic reticulum cisternae produce a fibrillar material which is then assembled into an amyloidogenic scaffold utilized to convey melanin close to the invader. These findings, in consideration to the critical role played by NET in the development of several pathologies, could explain the structural resistance of these scaffolds and could provide the basis for developing new diagnostic and therapeutic approaches in immunomediated diseases in which the innate branch of the immune system has a pivotal role.


Journal of clinical & cellular immunology | 2015

Polarization of Tumor Infiltrating Leukocytes from Innate Immunity and their role in the Pro-angiogenic Phenotype in NSCLC

Lorenzo Mortara; Silvia Zanellato; Barbara Bassani; Andrea Imperatori; Nicola Rotolo; Lorenzo Dominioni; Adriana Albini; Douglas M. Noonan; Antonino Bruno

Non-small cell lung cancer (NSCLC), the most frequent lung cancer (80%), can be phenotypically classified into two main subtypes: squamous cell carcinoma (SCC) and adenocarcinoma (ADC). While SCC has relatively rapid doubling times from the onset, ADC has longer doubling times initially that become reduced during tumor progression, suggesting a key role for the microenvironment. During lung tumor progression, a complex and dynamic interplay occurs between proliferating tumor cells and stromal, endothelial and immune tumor-conditioned host cells within the tumor microenvironment (TUMIC). Several factors within the TUMIC, such as hypoxia, cytokines and soluble factors, appear to blunt the anti-tumor immune response and polarize immune cells towards a pro-tumor phenotype. Phenotypically and functionally altered immune cells found in cancer patients include macrophages, neutrophils, myeloid, dendritic, and even NK cells. We studied tumor infiltrating (TINK) and tumor associated (TANK) NK cells in NSCLC. NSCLC TINKs and TANKs show similarities to decidual NK cells, being polarized toward tissue builders, rather than killers, and producing pro-angiogenic cytokines. The functionally polarized immune cells in NSCLC provide the stromal support and neovascularization required for NSCLC tumor expansion and progression in a feed-forward mechanism, leading to tumor progression. Further, systemic alterations of immune cells are also present in NSCLC patients. The precise knowledge of these immune cell alterations within the TUMIC has become crucial for diagnosis, targeted therapeutic intervention, as well as prevention, of NSCLC cancer.


Journal of Bioanalysis & Biomedicine | 2015

Effect of a Purified Extract of Olive Mill Waste water on Endothelial CellProliferation, Apoptosis, Migration and Capillary-Like Structure in vitroand in vivo

Teresa Rossi; Barbara Bassani; Cristina Gallo; Sally Maramotti; Douglas M. Noonan; Adriana Albini; Antonino Bruno

Olive oil, a major feature of the Mediterranean diet, is an important source of phenolic compounds. Poliphenols are associated with inhibition of several pathological processes, including cancer. Soluble phenols are contained in the aqueous part of olive and are discarded during oil production in the ‘olive mill wastewaters’. Here we investigated the properties of a purified extract of olive mill wastewaters, named A009, as potential anti-angiogenic compound. While the strong anti-oxidant activity of olive derived phenolic compounds has been well characterized, little is known about their anti-angiogenic properties. We investigated effects of A009 on endothelial cell morphogenesis, proliferation, migration and apoptosis, comparing the results obtained with the activity of a well-characterized olive oil phenol, Hydroxytyrosol (HT). Further, we tested the effects of A009 and HT in an in vivo angiogenesis assay. We found that A009 exerted strong anti-angiogenic effects both in vitro and in vivo, and that the complex natural purified extract has stronger anti-angiogenic potential when compared to the same concentrations of HT in most of the assays performed. These data demonstrate that a novel purified, phenols enriched, extract with anti-angiogenic, and angiopreventive potential can be obtained from olive oil mill waste material, recovering useful products from an agricultural waste.


Ecancermedicalscience | 2015

Biomarkers of cancer angioprevention for clinical studies

Adriana Albini; Francesco Bertolini; Barbara Bassani; Antonino Bruno; Cristina Gallo; Stefano Giuseppe Caraffi; Sally Maramotti; Douglas M. Noonan

With the great advances made in the treatment and prevention of infectious diseases over the last century, chronic degenerative diseases—cardiovascular, cerebrovascular, and cancer—represent the major causes of death in the developed world. Although massive efforts and investments have been made in cancer therapy, the progress made towards reducing mortality has been more successful for cardiovascular disease than for tumours. This can be attributable largely to an active prevention approach implemented for cardiovascular disease. Cardiologists treat their patients before the overt disease becomes life threatening, performing early interventions in phenotypically healthy patients, by using several markers that predict risk. If the concept of prevention could be applied to cancer in a more extensive way, a significant number of tumours could be avoided through preventive measures. Prevention approaches range from avoiding tobacco exposure to dietary strategies to active pharmacological approaches in higher risk groups. Host targets rather than the tumour cells themselves are attractive for chemoprevention, in particular endothelial and immune cells. Angioprevention i.e. preventing cancer angiogenesis is a key concept that we introduced; yet one of the major current challenges for anti-angiogenesis in therapy and prevention is finding the right biomarkers. Here we discuss the importance of angioprevention and the potential use of VEGF, PlGF, CD31, Ang and Tie, circulating vascular cell precursors, and microRNA as potential biomarkers.


PLOS ONE | 2016

Fenretinide (4-HPR) Targets Caspase-9, ERK 1/2 and the Wnt3a/β-Catenin Pathway in Medulloblastoma Cells and Medulloblastoma Cell Spheroids.

Barbara Bassani; Desiree Bartolini; Arianna Pagani; Elisa Principi; Massimo Zollo; Douglas M. Noonan; Adriana Albini; Antonino Bruno

Medulloblastoma (MB), a neuroectodermal tumor arising in the cerebellum, represents the most frequent childhood brain malignancy. Current treatments for MB combine radiation and chemotherapy and are often associated with relevant side effects; novel therapeutic strategies are urgently needed. N-(4-Hydroxyphenyl) retinamide (4-HPR, fenretinide), a synthetic analogue of all-trans retinoic acid, has emerged as a promising and well-tolerated cancer chemopreventive and chemotherapeutic agent for various neoplasms, from breast cancer to neuroblastoma. Here we investigated the effects of 4-HPR on MB cell lines and identified the mechanism of action for a potential use in therapy of MB. Flow cytometry analysis was performed to evaluate 4-HPR induction of apoptosis and oxygen reactive species (ROS) production, as well as cell cycle effects. Functional analysis to determine 4-HPR ability to interfere with MB cell migration and invasion were performed. Western Blot analysis were used to investigate the crucial molecules involved in selected signaling pathways associated with apoptosis (caspase-9 and PARP-1), cell survival (ERK 1/2) and tumor progression (Wnt3a and β-catenin). We show that 4-HPR induces caspase 9-dependent cell death in DAOY and ONS-76 cells, associated with increased ROS generation, suggesting that free radical intermediates might be directly involved. We observed 4-HPR induction of cell cycle arrest in G1/S phase, inactivated β-catenin, and inhibition of MB cell migration and invasion. We also evaluated the ability of 4-HPR to target MB cancer-stem/cancer-initiating cells, using an MB spheroids model, followed by flow cytometry and quantitative real-time PCR. 4-HPR treatment reduced DAOY and ONS-76 spheroid formation, in term of number and size. Decreased expression of the surface markers CD133+ and ABCG2+ as well as Oct-4 and Sox-2 gene expression were observed on BTICs treated with 4-HPR further reducing BITIC invasive activities. Finally, we analyzed 4-HPR ability to inhibit MB tumor cell growth in vivo in nude mice. Taken together, our data suggest that 4-HPR targets both parental and MB tumor stem/initiating cell-like populations. Since 4-HPR exerts low toxicity, it could represent a valid compound in the treatment of human MB.

Collaboration


Dive into the Barbara Bassani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adriana Albini

National Cancer Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Albini

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge