Antonio Fincato
STMicroelectronics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonio Fincato.
Proceedings of SPIE | 2016
Charles Baudot; Antonio Fincato; Daivid Fowler; Diego Pérez-Galacho; Aurélie Souhaité; S. Messaoudene; Romuald Blanc; Claire Richard; Jonathan Planchot; Côme De-Buttet; Bastien Orlando; Fabien Gays; Cecilia M. Mezzomo; Emilie Bernard; Delphine Marris-Morini; Laurent Vivien; Christophe Kopp; F. Boeuf
A new technological platform aimed at making prototypes and feasibility studies has been setup at STMicroelectronics using 300mm wafer foundry facilities. The technology, called DAPHNE (Datacom Advanced PHotonic Nanoscale Environment), is devoted at developing and evaluating new devices and sub-systems in particular for wavelength division multiplexing (WDM) applications and ring resonator based applications. Developed in the course of PLAT4MFP7 European project, DAPHNE is a flexible platform that fits perfectly R&D needs. The fabrication flow enables the processing of photonic integrated circuits using a silicon-on-insulator (SOI) of 300nm, partial etches of 150nm and 50nm and a total silicon etching. Consequently, two varieties of rib waveguides and one strip waveguide can be fabricated simultaneously with auto-alignment properties. The process variability on the 150nm partially etched silicon and the thin 50nm slab region are both less than 6 nm. Using a variety of different implantation configurations and a back-end of line of 5 metal layers, active devices are fabricated both in germanium and silicon. An available far back-end of line process consists of making 20 μm diameter copper posts on top of the electrical pads so that an electronic integrated circuit can be bonded on top the photonic die by 3D integration. Besides having those fabrication process options, DAPHNE is equipped with a library of standard cells for optical routing and multiplexing. Moreover, typical Mach-Zehnder modulators based on silicon pn junctions are also available for optical signal modulation. To achieve signal detection, germanium photodetectors also exist as standard cells. The measured single-mode propagation losses are 3.5 dB/cm for strip, 3.7 dB/cm for deep-rib (50nm slab) and 1.4 dB/cm for standard rib (150nm slab) waveguides. Transition tapers between different waveguide structures are as low as 0.006 dB.
Archive | 1997
Antonio Fincato; Maurizio Lenzi; Domenico Di Mola
Archive | 2008
Antonio Fincato; Ubaldo Mastromatteo
Archive | 2005
Antonio Fincato
Archive | 2009
Guido Chiaretti; Antonio Fincato
Archive | 1997
Guido Chiaretti; Antonio Fincato
Archive | 1997
Antonio Fincato; Maurizio Lenzi
Archive | 2015
Antonio Fincato; Salvatore Rotolo; Enrico Stefano Temporiti Milani; Maurizio Zuffada
Archive | 2005
Antonio Fincato
Archive | 2005
Antonello Cutolo; Guido Chiaretti; Antonio Fincato