Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonio Valencia is active.

Publication


Featured researches published by Antonio Valencia.


The Journal of Neuroscience | 2010

Aberrant Rab11-Dependent Trafficking of the Neuronal Glutamate Transporter EAAC1 Causes Oxidative Stress and Cell Death in Huntington's Disease

Xueyi Li; Antonio Valencia; Ellen Sapp; Nicholas Masso; Jonathan Alexander; Patrick Reeves; Kimberly B. Kegel; Neil Aronin; Marian DiFiglia

Oxidative stress contributes to neurodegeneration in Huntingtons disease (HD). However, the origins of oxidative stress in HD remain unclear. Studies in HD transgenic models suggest involvement of mitochondrial dysfunction, which would lead to overproduction of reactive oxygen species (ROS). Impaired mitochondria complexes occur in late stages of HD but not in presymptomatic or early-stage HD patients. Thus, other mechanisms may account for the earliest source of oxidative stress caused by endogenous mutant huntingtin. Here, we report that decreased levels of a major intracellular antioxidant glutathione coincide with accumulation of ROS in primary HD neurons prepared from embryos of HD knock-in mice (HD140Q/140Q), which have human huntingtin exon 1 with 140 CAG repeats inserted into the endogenous mouse huntingtin gene. Uptake of extracellular cysteine through the glutamate/cysteine transporter EAAC1 is required for de novo synthesis of glutathione in neurons. We found that, compared with wild-type neurons, HD neurons had lower cell surface levels of EAAC1 and were deficient in taking up cysteine. Constitutive trafficking of EAAC1 from recycling endosomes relies on Rab11 activity, which is defective in the brain of HD140Q/140Q mice. Enhancement of Rab11 activity by expression of a dominant-active Rab11 mutant in primary HD neurons ameliorated the deficit in cysteine uptake, increased levels of intracellular glutathione, normalized clearance of ROS, and improved neuronal survival. Our data support a novel mechanism for oxidative stress in HD: Rab11 dysfunction slows trafficking of EAAC1 to the cell surface and impairs cysteine uptake, thereby leading to deficient synthesis of glutathione.


Human Molecular Genetics | 2013

Elevated NADPH oxidase activity contributes to oxidative stress and cell death in Huntington’s disease

Antonio Valencia; Ellen Sapp; Jeffrey S. Kimm; Hollis McClory; Patrick B. Reeves; Jonathan Alexander; Kwadwo A. Ansong; Nicholas Masso; Matthew P. Frosch; Kimberly B. Kegel; Xueyi Li; Marian DiFiglia

A mutation in the huntingtin (Htt) gene produces mutant Htt and Huntingtons disease (HD), a neurodegenerative disorder. HD patients have oxidative damage in the brain, but the causes are unclear. Compared with controls, we found brain levels of NADPH oxidase (NOX) activity, which produces reactive oxygen species (ROS), elevated in human HD postmortem cortex and striatum and highest in striatum of presymptomatic individuals. Synaptosome fractions from cortex and striatum of HD(140Q/140Q) mice had elevated NOX activity at 3 months of age and a further rise at 6 and 12 months compared with synaptosomes of age-matched wild-type (WT) mice. High NOX activity in primary cortical and striatal neurons of HD(140Q/140Q) mice correlated with more ROS and neurite swellings. These features and neuronal cell death were markedly reduced by treatment with NOX inhibitors such as diphenyleneiodonium (DPI), apocynin (APO) and VAS2870. The rise in ROS levels in mitochondria of HD(140Q/140Q) neurons followed the rise in NOX activity and inhibiting only mitochondrial ROS was not neuroprotective. Mutant Htt colocalized at plasma membrane lipid rafts with gp91-phox, a catalytic subunit for the NOX2 isoform. Assembly of NOX2 components at lipid rafts requires activation of Rac1 which was also elevated in HD(140Q/140Q) neurons. HD(140Q/140Q) mice bred to gp91-phox knock-out mice had lower NOX activity in the brain and in primary neurons, and neurons had normal ROS levels and significantly improved survival. These findings suggest that increased NOX2 activity at lipid rafts is an early and major source of oxidative stress and cell death in HD(140Q/140Q) neurons.


Molecular and Cellular Biology | 2009

Mutant Huntingtin Impairs Vesicle Formation from Recycling Endosomes by Interfering with Rab11 Activity

Xueyi Li; Clive Standley; Ellen Sapp; Antonio Valencia; Zheng-Hong Qin; Kimberly B. Kegel; Jennifer Yoder; Laryssa A. Comer-Tierney; Miguel Esteves; Kathryn Chase; Jonathan Alexander; Nicholas Masso; Lindsay Sobin; Karl D. Bellve; Richard A. Tuft; Lawrence M. Lifshitz; Kevin E. Fogarty; Neil Aronin; Marian DiFiglia

ABSTRACT Huntingtin (Htt) localizes to endosomes, but its role in the endocytic pathway is not established. Recently, we found that Htt is important for the activation of Rab11, a GTPase involved in endosomal recycling. Here we studied fibroblasts of healthy individuals and patients with Huntingtons disease (HD), which is a movement disorder caused by polyglutamine expansion in Htt. The formation of endocytic vesicles containing transferrin at plasma membranes was the same in control and HD patient fibroblasts. However, HD fibroblasts were delayed in recycling biotin-transferrin back to the plasma membrane. Membranes of HD fibroblasts supported less nucleotide exchange on Rab11 than did control membranes. Rab11-positive vesicular and tubular structures in HD fibroblasts were abnormally large, suggesting that they were impaired in forming vesicles. We used total internal reflection fluorescence imaging of living fibroblasts to monitor fluorescence-labeled transferrin-carrying transport intermediates that emerged from recycling endosomes. HD fibroblasts had fewer small vesicles and more large vesicles and long tubules than did control fibroblasts. Dominant active Rab11 expressed in HD fibroblasts normalized the recycling of biotin-transferrin. We propose a novel mechanism for cellular dysfunction by the HD mutation arising from the inhibition of Rab11 activity and a deficit in vesicle formation at recycling endosomes.


Journal of Neuroscience Research | 2010

Mutant Huntingtin and Glycogen Synthase Kinase 3-β Accumulate in Neuronal Lipid Rafts of a Presymptomatic Knock-In Mouse Model of Huntington's Disease

Antonio Valencia; Patrick B. Reeves; Ellen Sapp; Xueyi Li; Jonathan Alexander; Kimberly B. Kegel; Kathryn Chase; Neil Aronin; Marian DiFiglia

Patients with Huntingtons disease have an expanded polyglutamine tract in huntingtin and suffer severe brain atrophy and neurodegeneration. Because membrane dysfunction can occur in Huntingtons disease, we addressed whether mutant huntingtin in brain and primary neurons is present in lipid rafts, which are cholesterol‐enriched membrane domains that mediate growth and survival signals. Biochemical analysis of detergent‐resistant membranes from brains and primary neurons of wild‐type and presymptomatic Huntingtons disease knock‐in mice showed that wild‐type and mutant huntingtin were recovered in lipid raft‐enriched detergent‐resistant membranes. The association with lipid rafts was stronger for mutant huntingtin than wild‐type huntingtin. Lipid rafts extracted from Huntingtons disease mice had normal levels of lipid raft markers (Gαq, Ras, and flotillin) but significantly more glycogen synthase kinase 3‐β. Increases in glycogen synthase kinase 3‐β have been associated with apoptotic cell death. Treating Huntingtons disease primary neurons with inhibitors of glycogen synthase kinase 3‐β reduced neuronal death. We speculate that accumulation of mutant huntingtin and glycogen synthase kinase 3‐β in lipid rafts of presymptomatic Huntingtons disease mouse neurons contributes to neurodegeneration in Huntingtons disease.


Journal of Neurochemistry | 2009

Polyglutamine expansion in huntingtin alters its interaction with phospholipids

Kimberly B. Kegel; Ellen Sapp; Jonathan Alexander; Antonio Valencia; Patrick Reeves; Xueyi Li; Nicholas Masso; Lindsay Sobin; Neil Aronin; Marian DiFiglia

Huntingtin has an expanded polyglutamine tract in patients with Huntington’s disease. Huntingtin localizes to intracellular and plasma membranes but the function of huntingtin at membranes is unknown. Previously we reported that exogenously expressed huntingtin bound pure phospholipids using protein‐lipid overlays. Here we show that endogenous huntingtin from normal (Hdh7Q/7Q) mouse brain and mutant huntingtin from Huntington’s disease (Hdh140Q/140Q) mouse brain bound to large unilamellar vesicles containing phosphoinositol (PI) PI 3,4‐bisphosphate, PI 3,5‐bisphosphate, and PI 3,4,5‐triphosphate [PI(3,4,5)P3]. Huntingtin interactions with multivalent phospholipids were similar to those of dynamin. Mutant huntingtin associated more with phosphatidylethanolamine and PI(3,4,5)P3 than did wild‐type huntingtin, and associated with other phospholipids not recognized by wild‐type huntingtin. Wild‐type and mutant huntingtin also bound to large unilamellar vesicles containing cardiolipin, a phospholipid specific to mitochondrial membranes. Maximal huntingtin‐phospholipid association required inclusion of huntingtin amino acids 171–287. Endogenous huntingtin recruited to the plasma membrane in cells that incorporated exogenous PI 3,4‐bisphosphate and PI(3,4,5)P3 or were stimulated by platelet‐derived growth factor or insulin growth factor 1, which both activate PI 3‐kinase. These data suggest that huntingtin interacts with membranes through specific phospholipid associations and that mutant huntingtin may disrupt membrane trafficking and signaling at membranes.


Nature Neuroscience | 2013

Identification of NUB1 as a suppressor of mutant Huntingtin toxicity via enhanced protein clearance

Boxun Lu; Ismael Al-Ramahi; Antonio Valencia; Qiong Wang; Frada Berenshteyn; Haidi Yang; Tatiana Gallego-Flores; Salah Ichcho; Arnaud Lacoste; Marc Hild; Marian DiFiglia; Juan Botas; James Palacino

Huntingtons disease is caused by expanded CAG repeats in HTT, conferring toxic gain of function on mutant HTT (mHTT) protein. Reducing mHTT amounts is postulated as a strategy for therapeutic intervention. We conducted genome-wide RNA interference screens for genes modifying mHTT abundance and identified 13 hits. We tested 10 in vivo in a Drosophila melanogaster Huntingtons disease model, and 6 exhibited activity consistent with the in vitro screening results. Among these, negative regulator of ubiquitin-like protein 1 (NUB1) overexpression lowered mHTT in neuronal models and rescued mHTT-induced death. NUB1 reduces mHTT amounts by enhancing polyubiquitination and proteasomal degradation of mHTT protein. The process requires CUL3 and the ubiquitin-like protein NEDD8 necessary for CUL3 activation. As a potential approach to modulating NUB1 for treatment, interferon-β lowered mHTT and rescued neuronal toxicity through induction of NUB1. Thus, we have identified genes modifying endogenous mHTT using high-throughput screening and demonstrate NUB1 as an exemplar entry point for therapeutic intervention of Huntingtons disease.


Neurobiology of Disease | 2009

Disruption of Rab11 activity in a knock-in mouse model of Huntington's Disease

Xueyi Li; Ellen Sapp; Kathryn Chase; Laryssa A. Comer-Tierney; Nicholas Masso; Jonathan Alexander; Patrick Reeves; Kimberly B. Kegel; Antonio Valencia; Miguel Esteves; Neil Aronin; Marian DiFiglia

The Huntingtons disease (HD) mutation causes polyglutamine expansion in huntingtin (Htt) and neurodegeneration. Htt interacts with a complex containing Rab11GDP and is involved in activation of Rab11, which functions in endosomal recycling and neurite growth and long-term potentiation. Like other Rab proteins, Rab11GDP undergoes nucleotide exchange to Rab11GTP for its activation. Here we show that striatal membranes of HD(140Q/140Q) knock-in mice are impaired in supporting conversion of Rab11GDP to Rab11GTP. Dominant negative Rab11 expressed in the striatum and cortex of normal mice caused neuropathology and motor dysfunction, suggesting that a deficiency in Rab11 activity is pathogenic in vivo. Primary cortical neurons from HD(140Q/140Q) mice were delayed in recycling transferrin receptors back to the plasma membrane. Partial rescue from glutamate-induced cell death occurred in HD neurons expressing dominant active Rab11. We propose a novel mechanism of HD pathogenesis arising from diminished Rab11 activity at recycling endosomes.


Neuroreport | 2008

A function of huntingtin in guanine nucleotide exchange on Rab11

Xueyi Li; Ellen Sapp; Antonio Valencia; Kimberly B. Kegel; Zheng-Hong Qin; Jonathan Alexander; Nicholas Masso; Patrick Reeves; James J. Ritch; Scott Zeitlin; Neil Aronin; Marian DiFiglia

Huntingtin is ubiquitously expressed and enriched in the brain. Deletion of the huntingtin gene in mice is lethal during early embryonic development. The function of huntingtin is, however, not clear. Here, we report that huntingtin is important for the function of Rab11, a critical GTPase in regulating membrane traffic from recycling endosomes to the plasma membrane. In huntingtin-null embryonic stem cells, the levels of Rab11 on membranes and nucleotide exchange activity on Rab11 were significantly reduced compared with normal embryonic stem cells. In brain membranes, an antibody against huntingtin immunoprecipitated a nucleotide exchange activity on Rab11 and huntingtin was coprecipitated with Rab11 in the presence of guanosine diphosphate. These data suggest a role for huntingtin in a complex that activates Rab11.


Journal of Huntington's disease | 2013

Striatal Synaptosomes from Hdh140Q/140Q Knock-in Mice have Altered Protein Levels, Novel Sites of Methionine Oxidation, and Excess Glutamate Release after Stimulation

Antonio Valencia; Ellen Sapp; Jeffrey S. Kimm; Hollis McClory; Kwadwo A. Ansong; George Yohrling; Seung Kwak; Kimberly B. Kegel; Karin M. Green; Scott A. Shaffer; Neil Aronin; Marian DiFiglia

BACKGROUND Synaptic connections are disrupted in patients with Huntingtons disease (HD). Synaptosomes from postmortem brain are ideal for synaptic function studies because they are enriched in pre- and post-synaptic proteins important in vesicle fusion, vesicle release, and neurotransmitter receptor activation. OBJECTIVE To examine striatal synaptosomes from 3, 6 and 12 month old WT and Hdh140Q/140Q knock-in mice for levels of synaptic proteins, methionine oxidation, and glutamate release. METHODS We used Western blot analysis, glutamate release assays, and liquid chromatography tandem mass spectrometry (LC-MS/MS). RESULTS Striatal synaptosomes of 6 month old Hdh140Q/140Q mice had less DARPP32, syntaxin 1 and calmodulin compared to WT. Striatal synaptosomes of 12 month old Hdh140Q/140Q mice had lower levels of DARPP32, alpha actinin, HAP40, Na+/K+-ATPase, PSD95, SNAP-25, TrkA and VAMP1, VGlut1 and VGlut2, increased levels of VAMP2, and modifications in actin and calmodulin compared to WT. More glutamate released from vesicles of depolarized striatal synaptosomes of 6 month old Hdh140Q/140Q than from age matched WT mice but there was no difference in glutamate release in synaptosomes of 3 and 12 month old WT and Hdh140Q/140Q mice. LC-MS/MS of 6 month old Hdh140Q/140Q mice striatal synaptosomes revealed that about 4% of total proteins detected (>600 detected) had novel sites of methionine oxidation including proteins involved with vesicle fusion, trafficking, and neurotransmitter function (synaptophysin, synapsin 2, syntaxin 1, calmodulin, cytoplasmic actin 2, neurofilament, and tubulin). Altered protein levels and novel methionine oxidations were also seen in cortical synaptosomes of 12 month old Hdh140Q/140Q mice. CONCLUSIONS Findings provide support for early synaptic dysfunction in Hdh140Q/140Q knock-in mice arising from altered protein levels, oxidative damage, and impaired glutamate neurotransmission and suggest that study of synaptosomes could be of value for evaluating HD therapies.


Journal of Biological Chemistry | 2012

Native Mutant Huntingtin in Human Brain EVIDENCE FOR PREVALENCE OF FULL-LENGTH MONOMER

Ellen Sapp; Antonio Valencia; Xueyi Li; Neil Aronin; Kimberly B. Kegel; Jean Paul Vonsattel; Anne B. Young; Nancy S. Wexler; Marian DiFiglia

Background: In brain lysates denatured huntingtin is full-length and fragmented. Results: Blue Native PAGE analysis revealed huntingtin as a soluble full-length monomer and resistant to exogenous protease cleavage. Exposure to denaturants cleaved mutant huntingtin. Conclusion: Native mutant huntingtin in brain is unstable compared with wild-type huntingtin. Significance: Native conditions may improve detection of full-length huntingtin in human brain. Huntington disease (HD) is caused by polyglutamine expansion in the N terminus of huntingtin (htt). Analysis of human postmortem brain lysates by SDS-PAGE and Western blot reveals htt as full-length and fragmented. Here we used Blue Native PAGE (BNP) and Western blots to study native htt in human postmortem brain. Antisera against htt detected a single band broadly migrating at 575–850 kDa in control brain and at 650–885 kDa in heterozygous and Venezuelan homozygous HD brains. Anti-polyglutamine antisera detected full-length mutant htt in HD brain. There was little htt cleavage even if lysates were pretreated with trypsin, indicating a property of native htt to resist protease cleavage. A soluble mutant htt fragment of about 180 kDa was detected with anti-htt antibody Ab1 (htt-(1–17)) and increased when lysates were treated with denaturants (SDS, 8 m urea, DTT, or trypsin) before BNP. Wild-type htt was more resistant to denaturants. Based on migration of in vitro translated htt fragments, the 180-kDa segment terminated ≈htt 670–880 amino acids. If second dimension SDS-PAGE followed BNP, the 180-kDa mutant htt was absent, and 43–50 kDa htt fragments appeared. Brain lysates from two HD mouse models expressed native full-length htt; a mutant fragment formed if lysates were pretreated with 8 m urea + DTT. Native full-length mutant htt in embryonic HD140Q/140Q mouse primary neurons was intact during cell death and when cell lysates were exposed to denaturants before BNP. Thus, native mutant htt occurs in brain and primary neurons as a soluble full-length monomer.

Collaboration


Dive into the Antonio Valencia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil Aronin

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge