Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ellen Sapp is active.

Publication


Featured researches published by Ellen Sapp.


Neuron | 1995

Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons.

Marian DiFiglia; Ellen Sapp; Kathryn Chase; Cordula Schwarz; Alison R. Meloni; Christine Young; Eileen J. Martin; Jean-Paul Vonsattel; Robert E. Carraway; Steven A Reeves; Frederick M. Boyce; Neil Aronin

The gene defective in Huntingtons disease encodes a protein, huntingtin, with unknown function. Antisera generated against three separate regions of huntingtin identified a single high molecular weight protein of approximately 320 kDa on immunoblots of human neuroblastoma extracts. The same protein species was detected in human and rat cortex synaptosomes and in sucrose density gradients of vesicle-enriched fractions, where huntingtin immunoreactivity overlapped with the distribution of vesicle membrane proteins (SV2, transferrin receptor, and synaptophysin). Immunohistochemistry in human and rat brain revealed widespread cytoplasmic labeling of huntingtin within neurons, particularly cell bodies and dendrites, rather than the more selective pattern of axon terminal labeling characteristic of many vesicle-associated proteins. At the ultrastructural level, immunoreactivity in cortical neurons was detected in the matrix of the cytoplasm and around the membranes of the vesicles. The ubiquitous cytoplasmic distribution of huntingtin in neurons and its association with vesicles suggest that huntingtin may have a role in vesicle trafficking.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington's disease brains, associate with membranes, and undergo calpain-dependent proteolysis

Yun Joong Kim; Yong Yi; Ellen Sapp; Yumei Wang; Ben Cuiffo; Kimberly B. Kegel; Zheng-Hong Qin; Neil Aronin; Marian DiFiglia

The Huntingtons disease (HD) mutation is a polyglutamine expansion in the N-terminal region of huntingtin (N-htt). How neurons die in HD is unclear. Mutant N-htt aggregates in neurons in the HD brain; expression of mutant N-htt in vitro causes cell death. Other in vitro studies show that proteolysis by caspase 3 could be important in regulating mutant N-htt function, but there has been no direct evidence for caspase 3-cleaved N-htt fragments in brain. Here, we show that N-htt fragments consistent with the size produced by caspase 3 cleavage in vitro are resident in the cortex, striatum, and cerebellum of normal and adult onset HD brain and are similar in size to the fragments seen after exogenous expression of human huntingtin in mouse clonal striatal neurons. HD brain extracts treated with active caspase 3 had increased levels of N-htt fragments. Compared with the full-length huntingtin, the caspase 3-cleaved N-htt fragments, especially the mutant fragment, preferentially segregated with the membrane fraction. Partial proteolysis of the human caspase 3-cleaved N-htt fragment by calpain occurred in vitro and resulted in smaller N-terminal products; products of similar size appeared when mouse brain protein extracts were treated with calpain. Results support the idea that sequential proteolysis by caspase 3 and calpain may regulate huntingtin function at membranes and produce N-terminal mutant fragments that aggregate and cause cellular dysfunction in HD.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits

Marian DiFiglia; Miguel Sena-Esteves; Kathryn Chase; Ellen Sapp; Edith L. Pfister; Meghan Sass; Jennifer Yoder; Patrick B. Reeves; Rajendra K. Pandey; Kallanthottathil G. Rajeev; Muthiah Manoharan; Dinah Sah; Phillip D. Zamore; Neil Aronin

Huntingtons disease (HD) is a neurodegenerative disorder caused by expansion of a CAG repeat in the huntingtin (Htt) gene. HD is autosomal dominant and, in theory, amenable to therapeutic RNA silencing. We introduced cholesterol-conjugated small interfering RNA duplexes (cc-siRNA) targeting human Htt mRNA (siRNA-Htt) into mouse striata that also received adeno-associated virus containing either expanded (100 CAG) or wild-type (18 CAG) Htt cDNA encoding huntingtin (Htt) 1–400. Adeno-associated virus delivery to striatum and overlying cortex of the mutant Htt gene, but not the wild type, produced neuropathology and motor deficits. Treatment with cc-siRNA-Htt in mice with mutant Htt prolonged survival of striatal neurons, reduced neuropil aggregates, diminished inclusion size, and lowered the frequency of clasping and footslips on balance beam. cc-siRNA-Htt was designed to target human wild-type and mutant Htt and decreased levels of both in the striatum. Our findings indicate that a single administration into the adult striatum of an siRNA targeting Htt can silence mutant Htt, attenuate neuronal pathology, and delay the abnormal behavioral phenotype observed in a rapid-onset, viral transgenic mouse model of HD.


Experimental Neurology | 1998

Wild-Type and Mutant Huntingtins Function in Vesicle Trafficking in the Secretory and Endocytic Pathways☆

James Velier; Manho Kim; Cordula Schwarz; Tae Wan Kim; Ellen Sapp; Kathryn Chase; Neil Aronin; Marian DiFiglia

Huntingtin is a cytoplasmic protein that is found in neurons and somatic cells. In patients with Huntingtons disease (HD), the NH2-terminal region of huntingtin has an expanded polyglutamine tract. An abnormal protein interaction by mutant huntingtin has been proposed as a mechanism for HD pathogenesis. Huntingtin associates with vesicle membranes and interacts with proteins involved in vesicle trafficking. It is unclear where along vesicle transport pathways wild-type and mutant huntingtins are found and whether polyglutamine expansion affects this localization. To distinguish wild-type and mutant huntingtin, fibroblasts from normals and HD patients with two mutant alleles (homozygotes) were examined. Immunofluorescence confocal microscopy showed that mutant huntingtin localized with clathrin in membranes of the trans Golgi network and in clathrin-coated and noncoated endosomal vesicles in the cytoplasm and along plasma membranes. Separation of organelles in Nycodenz gradients showed that in normal and HD homozygote patient cells, huntingtin was present in membrane fractions enriched in clathrin. Similar results were obtained in fibroblasts from heterozyote juvenile HD patients who had a highly expanded polyglutamine tract in the HD allele. Western blot analysis of membrane fractions from rat brain showed that wild-type huntingtin was present in fractions that contained purified clathrin-coated membranes or a mixture of clathrin-coated and noncoated membranes. Electron microscopy of huntingtin immunoreactivity in rat brain revealed labeling along dendritic plasma membranes in association with clathrin-coated pits and clusters of noncoated endosomal vesicles 40-60 nm in diameter. These data suggest that wild-type and mutant huntingtin can influence vesicle transport in the secretory and endocytic pathways through associations with clathrin-coated vesicles.


Journal of Neuropathology and Experimental Neurology | 1999

Axonal transport of N-terminal huntingtin suggests early pathology of corticostriatal projections in Huntington disease.

Ellen Sapp; John B. Penney; Anne Young; Neil Aronin; Jean-Paul Vonsattel; Marian DiFiglia

Aggregation of N-terminal mutant huntingtin within nuclear inclusions and dystrophic neurites occurs in the cortex and striatum of Huntington disease (HD) patients and may be involved in neurodegeneration. We examined the prevalence of inclusions and dystrophic neurites in the cortex and striatum of 15 adult onset HD patients who had mild to severe striatal cell loss (grades 1, 2 or 3) using an antibody that detects the N-terminal region of huntingtin. Nuclear inclusions were more frequent in the cortex than the striatum and were sparse or absent in the striatum of patients with low-grade striatal pathology. Dystrophic neurites occurred in both regions. Patients with low-grade striatal pathology had numerous fibers with immunoreactive puncta and large swellings within the striatal neuropil, the subcortical white matter, and the internal and external capsules. In the globus pallidus of 3 grade 1 cases, N-terminal huntingtin markedly accumulated in the perinuclear cytoplasm and in some axons but not in the nucleus. Findings suggest that in the earlier stages of HD, accumulation of N-terminal mutant huntingtin occurs in the cytoplasm and is associated with degeneration of the corticostriatal pathway.


Neuroscience | 1995

Evidence for a preferential loss of enkephalin immunoreactivity in the external globus pallidus in low grade Huntington's disease using high resolution image analysis

Ellen Sapp; Pei Ge; Hitoshi Aizawa; Edward D. Bird; John B. Penney; Anne B. Young; Jean-Paul Vonsattel; Marian DiFiglia

Previous studies have shown that in advanced cases of Huntingtons disease, enkephalin-immunoreactive striatal projections to the external globus pallidus may be more affected than substance P-containing striatal projections to the inner segment of the pallidum [Reiner A. et al. (1988) Proc. natn. Acad. Sci. U.S.A. 85, 5733-5737]. Other immunohistochemical [Ferrante R. J. et al. (1990) Soc. Neurosci. Abstr. 16, 1120] and neurochemical observations [Storey E. and Beal M.F. (1993) Brain 116, 1201-1222] suggest no difference in the loss of these peptide-containing pathways in Huntingtons disease. In view of the potential significance of this issue for understanding the neuropathological process in Huntingtons disease, we examined the globus pallidus in control and Huntingtons disease brains, using a quantitative approach which involved high resolution image analysis of 7 microns frozen sections to determine the overall density of peptide-immunoreactive terminals. Results showed that in the controls there was no significant difference between the density of enkephalin- and substance P-immunoreactive terminals in the external and internal globus pallidus, respectively. In all Huntingtons disease brains, including grade 1 cases, enkephalin-immunoreactive terminals in the external globus pallidus were significantly reduced compared to substance P-positive boutons in the internal segment of the adjacent section. In comparison to controls, enkephalin immunoreactivity in all Huntingtons disease cases was significantly lower; substance P-immunoreactive terminals in the internal globus pallidus were significantly lower than controls in some of the grade 2 cases and in the grade 3 cases.(ABSTRACT TRUNCATED AT 250 WORDS)


Neuron | 1995

CAG EXPANSION AFFECTS THE EXPRESSION OF MUTANT HUNTINGTIN IN THE HUNTINGTON'S DISEASE BRAIN

Neil Aronin; Kathryn Chase; Christine Young; Ellen Sapp; Cordula Schwarz; Nahida Matta; Ruth Kornreich; Bernhard Lanwehrmeyer; Edward D. Bird; M. Flint Beal; Jean-Paul Vonsattel; Thomas J. Smith; Robert E. Carraway; Frederick M. Boyce; Anne B. Young; John B. Penney; Marian DiFiglia

A trinucleotide repeat (CAG) expansion in the huntingtin gene causes Huntingtons disease (HD). In brain tissue from HD heterozygotes with adult onset and more clinically severe juvenile onset, where the largest expansions occur, a mutant protein of equivalent intensity to wild-type huntingtin was detected in cortical synaptosomes, indicating that a mutant species is synthesized and transported with the normal protein to nerve endings. The increased size of mutant huntingtin relative to the wild type was highly correlated with CAG repeat expansion, thereby linking an altered electrophoretic mobility of the mutant protein to its abnormal function. Mutant huntingtin appeared in gray and white matter with no difference in expression in affected regions. The mutant protein was broader than the wild type and in 6 of 11 juvenile cases resolved as a complex of bands, consistent with evidence at the DNA level for somatic mosaicism. Thus, HD pathogenesis results from a gain of function by an aberrant protein that is widely expressed in brain and is harmful only to some neurons.


Journal of Biological Chemistry | 2010

Mutant Huntingtin Fragments Form Oligomers in a Polyglutamine Length-dependent Manner in Vitro and in Vivo

Justin Legleiter; Emily Mitchell; Gregor P. Lotz; Ellen Sapp; Cheping Ng; Marian DiFiglia; Leslie M. Thompson; Paul J. Muchowski

Huntington disease (HD) is caused by an expansion of more than 35–40 polyglutamine (polyQ) repeats in the huntingtin (htt) protein, resulting in accumulation of inclusion bodies containing fibrillar deposits of mutant htt fragments. Intriguingly, polyQ length is directly proportional to the propensity for htt to form fibrils and the severity of HD and is inversely correlated with age of onset. Although the structural basis for htt toxicity is unclear, the formation, abundance, and/or persistence of toxic conformers mediating neuronal dysfunction and degeneration in HD must also depend on polyQ length. Here we used atomic force microscopy to demonstrate mutant htt fragments and synthetic polyQ peptides form oligomers in a polyQ length-dependent manner. By time-lapse atomic force microscopy, oligomers form before fibrils, are transient in nature, and are occasionally direct precursors to fibrils. However, the vast majority of fibrils appear to form by monomer addition coinciding with the disappearance of oligomers. Thus, oligomers must undergo a major structural transition preceding fibril formation. In an immortalized striatal cell line and in brain homogenates from a mouse model of HD, a mutant htt fragment formed oligomers in a polyQ length-dependent manner that were similar in size to those formed in vitro, although these structures accumulated over time in vivo. Finally, using immunoelectron microscopy, we detected oligomeric-like structures in human HD brains. These results demonstrate that oligomer formation by a mutant htt fragment is strongly polyQ length-dependent in vitro and in vivo, consistent with a causative role for these structures, or subsets of these structures, in HD pathogenesis.


The Journal of Neuroscience | 2004

Huntingtin Bodies Sequester Vesicle-Associated Proteins by a Polyproline-Dependent Interaction

Zheng-Hong Qin; Yumei Wang; Ellen Sapp; Benjamin G. Cuiffo; Erich Wanker; Michael R. Hayden; Kimberly B. Kegel; Neil Aronin; Marian DiFiglia

Polyglutamine expansion in the N terminus of huntingtin (htt) causes selective neuronal dysfunction and cell death by unknown mechanisms. Truncated htt expressed in vitro produced htt immunoreactive cytoplasmic bodies (htt bodies). The fibrillar core of the mutant htt body resisted protease treatment and contained cathepsin D, ubiquitin, and heat shock protein (HSP) 40. The shell of the htt body was composed of globules 14-34 nm in diameter and was protease sensitive. HSP70, proteasome, dynamin, and the htt binding partners htt interacting protein 1 (HIP1), SH3-containing Grb2-like protein (SH3GL3), and 14.7K-interacting protein were reduced in their normal location and redistributed to the shell. Removal of a series of prolines adjacent to the polyglutamine region in htt blocked formation of the shell of the htt body and redistribution of dynamin, HIP1, SH3GL3, and proteasome to it. Internalization of transferrin was impaired in cells that formed htt bodies. In cortical neurons of Huntingtons disease patients with early stage pathology, dynamin immunoreactivity accumulated in cytoplasmic bodies. Results suggest that accumulation of a nonfibrillar form of mutant htt in the cytoplasm contributes to neuronal dysfunction by sequestering proteins involved in vesicle trafficking.


Neuroreport | 1997

Fast transport and retrograde movement of huntingtin and HAP 1 in axons

Jessie Block-Galarza; Kathryn Chase; Ellen Sapp; Kevin T. Vaughn; Richard B. Vallee; Marian DiFiglia; Neil Aronin

HUNTINGTIN, the protein product of the Huntingtons disease gene, associates with vesicle membranes and microtubules in neurons. Analysis of axonal transport with a stop-flow, double crush ligation approach in rat sciatic nerve showed that full length huntingtin (350 kDa) and an N-terminal cleavage product (50 kD) were increased within 6–12 h on both the proximal and distal sides of the crush site when compared with normal unligated nerve. The huntingtin associated protein HAP 1 and the retrograde motor protein dynein also accumulated on both sides of the crush, whereas the vesicle docking protein SNAP-25 was elevated only proximally. The cytoskeletal protein a-tubulin was unaffected. The rapid anterograde accumulation of huntingtin and HAP 1 is compatible with their axonal transport on vesicular membranes. Retrograde movement of both proteins, as seen by accumulation distal to the nerve crush, may be necessary for their degradation at the soma or for a function in retrograde membrane trafficking.

Collaboration


Dive into the Ellen Sapp's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil Aronin

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathryn Chase

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anastasia Khvorova

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge