Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anupama Narla is active.

Publication


Featured researches published by Anupama Narla.


Science | 2014

Lenalidomide Causes Selective Degradation of IKZF1 and IKZF3 in Multiple Myeloma Cells

Jan Krönke; Namrata D. Udeshi; Anupama Narla; Peter Grauman; Slater N. Hurst; Marie McConkey; Tanya Svinkina; Dirk Heckl; Eamon Comer; Xiaoyu Li; Christie Ciarlo; Emily Hartman; Nikhil C. Munshi; Monica Schenone; Stuart L. Schreiber; Steven A. Carr; Benjamin L. Ebert

Drug With a (Re)Purpose Thalidomide, once infamous for its deleterious effects on fetal development, has re-emerged as a drug of great interest because of its beneficial immunomodulatory effects. A derivative drug called lenalidomide significantly extends the survival of patients with multiple myeloma, but the molecular mechanisms underlying its efficacy remain unclear (see the Perspective by Stewart). Building on a previous observation that thalidomide binds to cereblon, a ubiquitin ligase, Lu et al. (p. 305, published online 28 November) and Krönke et al. (p. 301, published online 28 November) show that in the presence of lenalidomide, cereblon selectively targets two B cell transcription factors (Ikaros family members, IKZF1 and IKZF3) for degradation. In myeloma cell lines and patient cells, down-regulation of IKZF1 and IKZF3 was necessary and sufficient for the drugs anticancer activity. Thus, lenalidomide may act, at least in part, by “grepurposing” a ubiquitin ligase. A drug with potent activity in multiple myeloma patients acts by inducing degradation of two specific transcription factors. [Also see Perspective by Stewart] Lenalidomide is a drug with clinical efficacy in multiple myeloma and other B cell neoplasms, but its mechanism of action is unknown. Using quantitative proteomics, we found that lenalidomide causes selective ubiquitination and degradation of two lymphoid transcription factors, IKZF1 and IKZF3, by the CRBN-CRL4 ubiquitin ligase. IKZF1 and IKZF3 are essential transcription factors in multiple myeloma. A single amino acid substitution of IKZF3 conferred resistance to lenalidomide-induced degradation and rescued lenalidomide-induced inhibition of cell growth. Similarly, we found that lenalidomide-induced interleukin-2 production in T cells is due to depletion of IKZF1 and IKZF3. These findings reveal a previously unknown mechanism of action for a therapeutic agent: alteration of the activity of an E3 ubiquitin ligase, leading to selective degradation of specific targets.


Blood | 2010

Ribosomopathies: human disorders of ribosome dysfunction

Anupama Narla; Benjamin L. Ebert

Ribosomopathies compose a collection of disorders in which genetic abnormalities cause impaired ribosome biogenesis and function, resulting in specific clinical phenotypes. Congenital mutations in RPS19 and other genes encoding ribosomal proteins cause Diamond-Blackfan anemia, a disorder characterized by hypoplastic, macrocytic anemia. Mutations in other genes required for normal ribosome biogenesis have been implicated in other rare congenital syndromes, Schwachman-Diamond syndrome, dyskeratosis congenita, cartilage hair hypoplasia, and Treacher Collins syndrome. In addition, the 5q- syndrome, a subtype of myelodysplastic syndrome, is caused by a somatically acquired deletion of chromosome 5q, which leads to haploinsufficiency of the ribosomal protein RPS14 and an erythroid phenotype highly similar to Diamond-Blackfan anemia. Acquired abnormalities in ribosome function have been implicated more broadly in human malignancies. The p53 pathway provides a surveillance mechanism for protein translation as well as genome integrity and is activated by defects in ribosome biogenesis; this pathway appears to be a critical mediator of many of the clinical features of ribosomopathies. Elucidation of the mechanisms whereby selective abnormalities in ribosome biogenesis cause specific clinical syndromes will hopefully lead to novel therapeutic strategies for these diseases.


Blood | 2011

Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells

Shilpee Dutt; Anupama Narla; Katherine I. Lin; Ann Mullally; Nirmalee Abayasekara; Christine Megerdichian; Frederick H. Wilson; Treeve Currie; Arati Khanna-Gupta; Nancy Berliner; Jeffery L. Kutok; Benjamin L. Ebert

Haploinsufficiency for ribosomal protein genes has been implicated in the pathophysiology of Diamond-Blackfan anemia (DBA) and the 5q-syndrome, a subtype of myelodysplastic syndrome. The p53 pathway is activated by ribosome dysfunction, but the molecular basis for selective impairment of the erythroid lineage in disorders of ribosome function has not been determined. We found that p53 accumulates selectively in the erythroid lineage in primary human hematopoietic progenitor cells after expression of shRNAs targeting RPS14, the ribosomal protein gene deleted in the 5q-syndrome, or RPS19, the most commonly mutated gene in DBA. Induction of p53 led to lineage-specific accumulation of p21 and consequent cell cycle arrest in erythroid progenitor cells. Pharmacologic inhibition of p53 rescued the erythroid defect, whereas nutlin-3, a compound that activates p53 through inhibition of HDM2, selectively impaired erythropoiesis. In bone marrow biopsies from patients with DBA or del(5q) myelodysplastic syndrome, we found an accumulation of nuclear p53 staining in erythroid progenitor cells that was not present in control samples. Our findings indicate that the erythroid lineage has a low threshold for the induction of p53, providing a basis for the failure of erythropoiesis in the 5q-syndrome, DBA, and perhaps other bone marrow failure syndromes.


Nature | 2016

CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells

Daniel P. Dever; Rasmus O. Bak; Andreas Reinisch; Joab Camarena; Gabriel Washington; Carmencita Nicolas; Mara Pavel-Dinu; Nivi Saxena; Alec B. Wilkens; Sruthi Mantri; Nobuko Uchida; Ayal Hendel; Anupama Narla; Ravindra Majeti; Kenneth I. Weinberg; Matthew H. Porteus

The β-haemoglobinopathies, such as sickle cell disease and β-thalassaemia, are caused by mutations in the β-globin (HBB) gene and affect millions of people worldwide. Ex vivo gene correction in patient-derived haematopoietic stem cells followed by autologous transplantation could be used to cure β-haemoglobinopathies. Here we present a CRISPR/Cas9 gene-editing system that combines Cas9 ribonucleoproteins and adeno-associated viral vector delivery of a homologous donor to achieve homologous recombination at the HBB gene in haematopoietic stem cells. Notably, we devise an enrichment model to purify a population of haematopoietic stem and progenitor cells with more than 90% targeted integration. We also show efficient correction of the Glu6Val mutation responsible for sickle cell disease by using patient-derived stem and progenitor cells that, after differentiation into erythrocytes, express adult β-globin (HbA) messenger RNA, which confirms intact transcriptional regulation of edited HBB alleles. Collectively, these preclinical studies outline a CRISPR-based methodology for targeting haematopoietic stem cells by homologous recombination at the HBB locus to advance the development of next-generation therapies for β-haemoglobinopathies.


Blood | 2012

L-Leucine improves the anemia and developmental defects associated with Diamond-Blackfan anemia and del(5q) MDS by activating the mTOR pathway.

Elspeth Payne; Maria Virgilio; Anupama Narla; Heather Sun; Michelle Levine; Barry H. Paw; Nancy Berliner; A T Look; Benjamin L. Ebert; Arati Khanna-Gupta

Haploinsufficiency of ribosomal proteins (RPs) has been proposed to be the common basis for the anemia observed in Diamond-Blackfan anemia (DBA) and myelodysplastic syndrome with loss of chromosome 5q [del(5q) MDS]. We have modeled DBA and del(5q) MDS in zebrafish using antisense morpholinos to rps19 and rps14, respectively, and have demonstrated that, as in humans, haploinsufficient levels of these proteins lead to a profound anemia. To address the hypothesis that RP loss results in impaired mRNA translation, we treated Rps19 and Rps14-deficient embryos with the amino acid L-leucine, a known activator of mRNA translation. This resulted in a striking improvement of the anemia associated with RP loss. We confirmed our findings in primary human CD34⁺ cells, after shRNA knockdown of RPS19 and RPS14. Furthermore, we showed that loss of Rps19 or Rps14 activates the mTOR pathway, and this is accentuated by L-leucine in both Rps19 and Rps14 morphants. This effect could be abrogated by rapamycin suggesting that mTOR signaling may be responsible for the improvement in anemia associated with L-leucine. Our studies support the rationale for ongoing clinical trials of L-leucine as a therapeutic agent for DBA, and potentially for patients with del(5q) MDS.


Blood | 2011

Coordinate loss of a microRNA and protein-coding gene cooperate in the pathogenesis of 5q− syndrome

Madhu S. Kumar; Anupama Narla; Atsushi Nonami; Ann Mullally; Nadya Dimitrova; Brian Ball; J. Randall McAuley; Luke Poveromo; Jeffrey L. Kutok; Naomi Galili; Azra Raza; Eyal C. Attar; D. Gary Gilliland; Tyler Jacks; Benjamin L. Ebert

Large chromosomal deletions are among the most common molecular abnormalities in cancer, yet the identification of relevant genes has proven difficult. The 5q- syndrome, a subtype of myelodysplastic syndrome (MDS), is a chromosomal deletion syndrome characterized by anemia and thrombocytosis. Although we have previously shown that hemizygous loss of RPS14 recapitulates the failed erythroid differentiation seen in 5q- syndrome, it does not affect thrombocytosis. Here we show that a microRNA located in the common deletion region of 5q- syndrome, miR-145, affects megakaryocyte and erythroid differentiation. We find that miR-145 functions through repression of Fli-1, a megakaryocyte and erythroid regulatory transcription factor. Patients with del(5q) MDS have decreased expression of miR-145 and increased expression of Fli-1. Overexpression of miR-145 or inhibition of Fli-1 decreases the production of megakaryocytic cells relative to erythroid cells, whereas inhibition of miR-145 or overexpression of Fli-1 has a reciprocal effect. Moreover, combined loss of miR-145 and RPS14 cooperates to alter erythroid-megakaryocytic differentiation in a manner similar to the 5q- syndrome. Taken together, these findings demonstrate that coordinate deletion of a miRNA and a protein-coding gene contributes to the phenotype of a human malignancy, the 5q- syndrome.


Blood | 2011

Dexamethasone and lenalidomide have distinct functional effects on erythropoiesis

Anupama Narla; Shilpee Dutt; J. Randall McAuley; Fatima Al-Shahrour; Slater N. Hurst; Marie McConkey; Donna Neuberg; Benjamin L. Ebert

Corticosteroids and lenalidomide decrease red blood cell transfusion dependence in patients with Diamond-Blackfan anemia (DBA) and myelodysplastic syndrome (MDS), respectively. We explored the effects of dexamethasone and lenalidomide, individually and in combination, on the differentiation of primary human bone marrow progenitor cells in vitro. Both agents promote erythropoiesis, increasing the absolute number of erythroid cells produced from normal CD34(+) cells and from CD34(+) cells with the types of ribosome dysfunction found in DBA and del(5q) MDS. However, the drugs had distinct effects on the production of erythroid progenitor colonies; dexamethasone selectively increased the number of burst-forming units-erythroid (BFU-E), whereas lenalidomide specifically increased colony-forming unit-erythroid (CFU-E). Use of the drugs in combination demonstrated that their effects are not redundant. In addition, dexamethasone and lenalidomide induced distinct gene-expression profiles. In coculture experiments, we examined the role of the microenvironment in response to both drugs and found that the presence of macrophages, the central cells in erythroblastic islands, accentuated the effects of both agents. Our findings indicate that dexamethasone and lenalidomide promote different stages of erythropoiesis and support the potential clinical utility of combination therapy for patients with bone marrow failure.


Immunologic Research | 2009

Allogeneic hematopoietic stem cell transplantation for X-linked ectodermal dysplasia and immunodeficiency: case report and review of outcomes.

Perdita Permaul; Anupama Narla; Jason L. Hornick; Sung-Yun Pai

Hypomorphic mutations in nuclear factor kappa B essential modulator (NEMO) cause X-linked ectodermal dysplasia with immunodeficiency (X-ED-ID). Clinical manifestations in boys with X-ED-ID apart from ectodermal dysplasia and immunodeficiency include osteopetrosis, lymphedema, and colitis. Further description of atypical findings in this disorder is needed. Treatment with allogeneic hematopoietic stem cell transplantation (HSCT) is in its infancy, and how or whether non-immune manifestations of defective NEMO function are impacted by HSCT is poorly described. We report an interesting case of a boy with NEMO mutation who had symptoms reminiscent of Omenn’s syndrome and small intestinal villous atrophy with features reminiscent of tufting enteropathy. We describe his treatment course as well as reconstitution of immune function and correction of osteopetrosis post-HSCT, and review the cases of allogeneic HSCT reported to date in the literature.


Nature | 2012

Mitochondrial Atpif1 regulates haem synthesis in developing erythroblasts

Dhvanit I. Shah; Naoko Takahashi-Makise; Jeffrey D. Cooney; Liangtao Li; Iman J. Schultz; Eric L. Pierce; Anupama Narla; Alexandra Seguin; Shilpa M. Hattangadi; Amy E. Medlock; Nathaniel B. Langer; Tamara A. Dailey; Slater N. Hurst; Danilo Faccenda; Jessica Wiwczar; Spencer K. Heggers; Guillaume Vogin; Wen Chen; Caiyong Chen; Dean R. Campagna; Carlo Brugnara; Yi Zhou; Benjamin L. Ebert; Nika N. Danial; Mark D. Fleming; Diane M. Ward; Michelangelo Campanella; Harry A. Dailey; Jerry Kaplan; Barry H. Paw

Defects in the availability of haem substrates or the catalytic activity of the terminal enzyme in haem biosynthesis, ferrochelatase (Fech), impair haem synthesis and thus cause human congenital anaemias. The interdependent functions of regulators of mitochondrial homeostasis and enzymes responsible for haem synthesis are largely unknown. To investigate this we used zebrafish genetic screens and cloned mitochondrial ATPase inhibitory factor 1 (atpif1) from a zebrafish mutant with profound anaemia, pinotage (pnt tq209). Here we describe a direct mechanism establishing that Atpif1 regulates the catalytic efficiency of vertebrate Fech to synthesize haem. The loss of Atpif1 impairs haemoglobin synthesis in zebrafish, mouse and human haematopoietic models as a consequence of diminished Fech activity and elevated mitochondrial pH. To understand the relationship between mitochondrial pH, redox potential, [2Fe–2S] clusters and Fech activity, we used genetic complementation studies of Fech constructs with or without [2Fe–2S] clusters in pnt, as well as pharmacological agents modulating mitochondrial pH and redox potential. The presence of [2Fe–2S] cluster renders vertebrate Fech vulnerable to perturbations in Atpif1-regulated mitochondrial pH and redox potential. Therefore, Atpif1 deficiency reduces the efficiency of vertebrate Fech to synthesize haem, resulting in anaemia. The identification of mitochondrial Atpif1 as a regulator of haem synthesis advances our understanding of the mechanisms regulating mitochondrial haem homeostasis and red blood cell development. An ATPIF1 deficiency may contribute to important human diseases, such as congenital sideroblastic anaemias and mitochondriopathies.


Leukemia | 2015

Coordinate regulation of residual bone marrow function by paracrine trafficking of AML exosomes.

Jianya Huan; Noah Hornick; Natalya A. Goloviznina; A N Kamimae Lanning; Larry L. David; P A Wilmarth; T Mori; J R Chevillet; Anupama Narla; Charles T. Roberts; Marc Loriaux; Bill H. Chang; Peter Kurre

We recently demonstrated that acute myeloid leukemia (AML) cell lines and patient-derived blasts release exosomes that carry RNA and protein; following an in vitro transfer, AML exosomes produce proangiogenic changes in bystander cells. We reasoned that paracrine exosome trafficking may have a broader role in shaping the leukemic niche. In a series of in vitro studies and murine xenografts, we demonstrate that AML exosomes downregulate critical retention factors (Scf, Cxcl12) in stromal cells, leading to hematopoietic stem and progenitor cell (HSPC) mobilization from the bone marrow. Exosome trafficking also regulates HSPC directly, and we demonstrate declining clonogenicity, loss of CXCR4 and c-Kit expression, and the consistent repression of several hematopoietic transcription factors, including c-Myb, Cebp-β and Hoxa-9. Additional experiments using a model of extramedullary AML or direct intrafemoral injection of purified exosomes reveal that the erosion of HSPC function can occur independent of direct cell–cell contact with leukemia cells. Finally, using a novel multiplex proteomics technique, we identified candidate pathways involved in the direct exosome-mediated modulation of HSPC function. In aggregate, this work suggests that AML exosomes participate in the suppression of residual hematopoietic function that precedes widespread leukemic invasion of the bone marrow directly and indirectly via stromal components.

Collaboration


Dive into the Anupama Narla's collaboration.

Top Co-Authors

Avatar

Benjamin L. Ebert

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Slater N. Hurst

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Barry H. Paw

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arati Khanna-Gupta

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Dhvanit I. Shah

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge