Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Slater N. Hurst is active.

Publication


Featured researches published by Slater N. Hurst.


Science | 2014

Lenalidomide Causes Selective Degradation of IKZF1 and IKZF3 in Multiple Myeloma Cells

Jan Krönke; Namrata D. Udeshi; Anupama Narla; Peter Grauman; Slater N. Hurst; Marie McConkey; Tanya Svinkina; Dirk Heckl; Eamon Comer; Xiaoyu Li; Christie Ciarlo; Emily Hartman; Nikhil C. Munshi; Monica Schenone; Stuart L. Schreiber; Steven A. Carr; Benjamin L. Ebert

Drug With a (Re)Purpose Thalidomide, once infamous for its deleterious effects on fetal development, has re-emerged as a drug of great interest because of its beneficial immunomodulatory effects. A derivative drug called lenalidomide significantly extends the survival of patients with multiple myeloma, but the molecular mechanisms underlying its efficacy remain unclear (see the Perspective by Stewart). Building on a previous observation that thalidomide binds to cereblon, a ubiquitin ligase, Lu et al. (p. 305, published online 28 November) and Krönke et al. (p. 301, published online 28 November) show that in the presence of lenalidomide, cereblon selectively targets two B cell transcription factors (Ikaros family members, IKZF1 and IKZF3) for degradation. In myeloma cell lines and patient cells, down-regulation of IKZF1 and IKZF3 was necessary and sufficient for the drugs anticancer activity. Thus, lenalidomide may act, at least in part, by “grepurposing” a ubiquitin ligase. A drug with potent activity in multiple myeloma patients acts by inducing degradation of two specific transcription factors. [Also see Perspective by Stewart] Lenalidomide is a drug with clinical efficacy in multiple myeloma and other B cell neoplasms, but its mechanism of action is unknown. Using quantitative proteomics, we found that lenalidomide causes selective ubiquitination and degradation of two lymphoid transcription factors, IKZF1 and IKZF3, by the CRBN-CRL4 ubiquitin ligase. IKZF1 and IKZF3 are essential transcription factors in multiple myeloma. A single amino acid substitution of IKZF3 conferred resistance to lenalidomide-induced degradation and rescued lenalidomide-induced inhibition of cell growth. Similarly, we found that lenalidomide-induced interleukin-2 production in T cells is due to depletion of IKZF1 and IKZF3. These findings reveal a previously unknown mechanism of action for a therapeutic agent: alteration of the activity of an E3 ubiquitin ligase, leading to selective degradation of specific targets.


Nature | 2015

Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS.

Jan Krönke; Emma C. Fink; Paul Hollenbach; Kyle J. MacBeth; Slater N. Hurst; Namrata D. Udeshi; Philip Chamberlain; D. R. Mani; Hon Wah Man; Anita Gandhi; Tanya Svinkina; Rebekka K. Schneider; Marie McConkey; Marcus Järås; Elizabeth A. Griffiths; Meir Wetzler; Lars Bullinger; Brian E. Cathers; Steven A. Carr; Rajesh Chopra; Benjamin L. Ebert

Lenalidomide is a highly effective treatment for myelodysplastic syndrome (MDS) with deletion of chromosome 5q (del(5q)). Here, we demonstrate that lenalidomide induces the ubiquitination of casein kinase 1A1 (CK1α) by the E3 ubiquitin ligase CUL4–RBX1–DDB1–CRBN (known as CRL4CRBN), resulting in CK1α degradation. CK1α is encoded by a gene within the common deleted region for del(5q) MDS and haploinsufficient expression sensitizes cells to lenalidomide therapy, providing a mechanistic basis for the therapeutic window of lenalidomide in del(5q) MDS. We found that mouse cells are resistant to lenalidomide but that changing a single amino acid in mouse Crbn to the corresponding human residue enables lenalidomide-dependent degradation of CK1α. We further demonstrate that minor side chain modifications in thalidomide and a novel analogue, CC-122, can modulate the spectrum of substrates targeted by CRL4CRBN. These findings have implications for the clinical activity of lenalidomide and related compounds, and demonstrate the therapeutic potential of novel modulators of E3 ubiquitin ligases.


Blood | 2011

Dexamethasone and lenalidomide have distinct functional effects on erythropoiesis

Anupama Narla; Shilpee Dutt; J. Randall McAuley; Fatima Al-Shahrour; Slater N. Hurst; Marie McConkey; Donna Neuberg; Benjamin L. Ebert

Corticosteroids and lenalidomide decrease red blood cell transfusion dependence in patients with Diamond-Blackfan anemia (DBA) and myelodysplastic syndrome (MDS), respectively. We explored the effects of dexamethasone and lenalidomide, individually and in combination, on the differentiation of primary human bone marrow progenitor cells in vitro. Both agents promote erythropoiesis, increasing the absolute number of erythroid cells produced from normal CD34(+) cells and from CD34(+) cells with the types of ribosome dysfunction found in DBA and del(5q) MDS. However, the drugs had distinct effects on the production of erythroid progenitor colonies; dexamethasone selectively increased the number of burst-forming units-erythroid (BFU-E), whereas lenalidomide specifically increased colony-forming unit-erythroid (CFU-E). Use of the drugs in combination demonstrated that their effects are not redundant. In addition, dexamethasone and lenalidomide induced distinct gene-expression profiles. In coculture experiments, we examined the role of the microenvironment in response to both drugs and found that the presence of macrophages, the central cells in erythroblastic islands, accentuated the effects of both agents. Our findings indicate that dexamethasone and lenalidomide promote different stages of erythropoiesis and support the potential clinical utility of combination therapy for patients with bone marrow failure.


Nature | 2012

Mitochondrial Atpif1 regulates haem synthesis in developing erythroblasts

Dhvanit I. Shah; Naoko Takahashi-Makise; Jeffrey D. Cooney; Liangtao Li; Iman J. Schultz; Eric L. Pierce; Anupama Narla; Alexandra Seguin; Shilpa M. Hattangadi; Amy E. Medlock; Nathaniel B. Langer; Tamara A. Dailey; Slater N. Hurst; Danilo Faccenda; Jessica Wiwczar; Spencer K. Heggers; Guillaume Vogin; Wen Chen; Caiyong Chen; Dean R. Campagna; Carlo Brugnara; Yi Zhou; Benjamin L. Ebert; Nika N. Danial; Mark D. Fleming; Diane M. Ward; Michelangelo Campanella; Harry A. Dailey; Jerry Kaplan; Barry H. Paw

Defects in the availability of haem substrates or the catalytic activity of the terminal enzyme in haem biosynthesis, ferrochelatase (Fech), impair haem synthesis and thus cause human congenital anaemias. The interdependent functions of regulators of mitochondrial homeostasis and enzymes responsible for haem synthesis are largely unknown. To investigate this we used zebrafish genetic screens and cloned mitochondrial ATPase inhibitory factor 1 (atpif1) from a zebrafish mutant with profound anaemia, pinotage (pnt tq209). Here we describe a direct mechanism establishing that Atpif1 regulates the catalytic efficiency of vertebrate Fech to synthesize haem. The loss of Atpif1 impairs haemoglobin synthesis in zebrafish, mouse and human haematopoietic models as a consequence of diminished Fech activity and elevated mitochondrial pH. To understand the relationship between mitochondrial pH, redox potential, [2Fe–2S] clusters and Fech activity, we used genetic complementation studies of Fech constructs with or without [2Fe–2S] clusters in pnt, as well as pharmacological agents modulating mitochondrial pH and redox potential. The presence of [2Fe–2S] cluster renders vertebrate Fech vulnerable to perturbations in Atpif1-regulated mitochondrial pH and redox potential. Therefore, Atpif1 deficiency reduces the efficiency of vertebrate Fech to synthesize haem, resulting in anaemia. The identification of mitochondrial Atpif1 as a regulator of haem synthesis advances our understanding of the mechanisms regulating mitochondrial haem homeostasis and red blood cell development. An ATPIF1 deficiency may contribute to important human diseases, such as congenital sideroblastic anaemias and mitochondriopathies.


International Journal of Hematology | 2011

Ribosome defects in disorders of erythropoiesis

Anupama Narla; Slater N. Hurst; Benjamin L. Ebert

Over the past decade, genetic lesions that cause ribosome dysfunction have been identified in both congenital and acquired human disorders. These discoveries have established a new category of disorders, known as ribosomopathies, in which the primary pathophysiology is related to impaired ribosome function. The protoptypical disorders are Diamond–Blackfan anemia, a congenital bone marrow failure syndrome, and the 5q- syndrome, a subtype of myelodysplastic syndrome. In both of these disorders, impaired ribosome function causes a severe macrocytic anemia. In this review, we will discuss the evidence that defects in ribosomal biogenesis cause the hematologic phenotype of Diamond–Blackfan anemia and the 5q- syndrome. We will also explore the potential mechanisms by which a ribosomal defect, which would be expected to have widespread consequences, may lead to specific defects in erythropoiesis.


British Journal of Haematology | 2014

L-Leucine improves the anaemia in models of Diamond Blackfan anaemia and the 5q- syndrome in a TP53-independent way

Anupama Narla; Elspeth Payne; Nirmalee Abayasekara; Slater N. Hurst; David M. Raiser; A. Thomas Look; Nancy Berliner; Benjamin L. Ebert; Arati Khanna-Gupta

Haploinsufficiency of ribosomal proteins (RPs) and upregulation of the tumour suppressor TP53 have been shown to be the common basis for the anaemia observed in Diamond Blackfan anaemia and 5q‐ myelodysplastic syndrome. We previously demonstrated that treatment with L‐Leucine resulted in a marked improvement in anaemia in disease models. To determine if the L‐Leucine effect was Tp53‐dependent, we used antisense MOs to rps19 and rps14 in zebrafish; expression of tp53 and its downstream target cdkn1a remained elevated following L‐leucine treatment. We confirmed this observation in human CD34+ cells. L‐Leucine thus alleviates anaemia in RP‐deficient cells in a TP53‐independent manner.


OncoImmunology | 2014

Lenalidomide induces degradation of IKZF1 and IKZF3

Jan Krönke; Slater N. Hurst; Benjamin L. Ebert

Lenalidomide and its analogs, thalidomide and pomalidomide, specifically inhibit growth of mature B-cell lymphomas, including multiple myeloma, and induce interleukin-2 (IL-2) release from T cells. We recently found that this results from activation of the CRBN-CRL4 E3 ubiquitin ligase to degrade the lymphoid transcription factors IKZF1 (Ikaros) and IKZF3 (Aiolos).


Nature | 2013

Corrigendum: Mitochondrial Atpif1 regulates haem synthesis in developing erythroblasts

Dhvanit I. Shah; Naoko Takahashi-Makise; Jeffrey D. Cooney; Liangtao Li; Iman J. Schultz; Eric L. Pierce; Anupama Narla; Alexandra Seguin; Shilpa M. Hattangadi; Amy E. Medlock; Nathaniel B. Langer; Tamara A. Dailey; Slater N. Hurst; Danilo Faccenda; Jessica Wiwczar; Spencer K. Heggers; Guillaume Vogin; Wen Chen; Caiyong Chen; Dean R. Campagna; Carlo Brugnara; Yi Zhou; Benjamin L. Ebert; Nika N. Danial; Mark D. Fleming; Diane M. Ward; Michelangelo Campanella; Harry A. Dailey; Jerry Kaplan; Barry H. Paw

This corrects the article DOI: 10.1038/nature11536


Nature | 2013

Erratum: Corrigendum: Mitochondrial Atpif1 regulates haem synthesis in developing erythroblasts

Dhvanit I. Shah; Naoko Takahashi-Makise; Jeffrey D. Cooney; Liangtao Li; Iman J. Schultz; Eric L. Pierce; Anupama Narla; Alexandra Seguin; Shilpa M. Hattangadi; Amy E. Medlock; Nathaniel B. Langer; Tamara A. Dailey; Slater N. Hurst; Danilo Faccenda; Jessica Wiwczar; Spencer K. Heggers; Guillaume Vogin; Wen Chen; Caiyong Chen; Dean R. Campagna; Carlo Brugnara; Yi Zhou; Benjamin L. Ebert; Nika N. Danial; Mark D. Fleming; Diane M. Ward; Michelangelo Campanella; Harry A. Dailey; Jerry Kaplan; Barry H. Paw

This corrects the article DOI: 10.1038/nature11536


Nature | 2013

Erratum: Mitochondrial Atpif1 regulates haem synthesis in developing erythroblasts (Nature (2012) 491 (608-612) doi:10.1038/nature11536)

Dhvanit I. Shah; Naoko Takahashi-Makise; Jeffrey D. Cooney; Liangtao Li; Iman J. Schultz; Eric L. Pierce; Anupama Narla; Alexandra Seguin; Shilpa M. Hattangadi; Amy E. Medlock; Nathaniel B. Langer; Tamara A. Dailey; Slater N. Hurst; Danilo Faccenda; Jessica Wiwczar; Spencer K. Heggers; Guillaume Vogin; Wen Chen; Caiyong Chen; Dean R. Campagna; Carlo Brugnara; Yi Zhou; Benjamin L. Ebert; Nika N. Danial; Mark D. Fleming; Diane M. Ward; Michelangelo Campanella; Harry A. Dailey; Jerry Kaplan; Barry H. Paw

This corrects the article DOI: 10.1038/nature11536

Collaboration


Dive into the Slater N. Hurst's collaboration.

Top Co-Authors

Avatar

Benjamin L. Ebert

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marie McConkey

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Barry H. Paw

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Carlo Brugnara

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Dhvanit I. Shah

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric L. Pierce

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Guillaume Vogin

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge