Aparajita Singha
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aparajita Singha.
Science | 2016
Fabio Donati; Stefano Rusponi; Sebastian Stepanow; Christian Wäckerlin; Aparajita Singha; Luca Persichetti; Romana Baltic; Katharina Diller; F. Patthey; Edgar Fernandes; Jan Dreiser; Ž. Šljivančanin; Kurt Kummer; Corneliu Nistor; Pietro Gambardella; Harald Brune
Stable magnets from single atoms An important goal in molecular magnetism is to create a permanent magnet from a single atom. Metal atoms adsorbed on surfaces can develop strong magnetization in an applied field (paramagnetism). Donati et al. show that single holmium atoms adsorbed on a magnesium oxide film grown on a silver substrate show residual magnetism for temperatures up to 30 K and bistabilty that lasts for 1500 s at 10 K (see the Perspective by Khajetoorians and Heinrich). The atom avoids spin relaxation by a combination of quantum-state symmetry and by the oxide film preventing the spin from interacting with the underlying metal via tunneling. Science, this issue p. 318; see also p. 296 A single holmium atom on a magnesium oxide film can retain its magnetic moment up to 30 kelvin. [Also see Perspective by Khajetoorians and Heinrich] A permanent magnet retains a substantial fraction of its saturation magnetization in the absence of an external magnetic field. Realizing magnetic remanence in a single atom allows for storing and processing information in the smallest unit of matter. We show that individual holmium (Ho) atoms adsorbed on ultrathin MgO(100) layers on Ag(100) exhibit magnetic remanence up to a temperature of 30 kelvin and a relaxation time of 1500 seconds at 10 kelvin. This extraordinary stability is achieved by the realization of a symmetry-protected magnetic ground state and by decoupling the Ho spin from the underlying metal by a tunnel barrier.
Advanced Materials | 2016
Christian Wäckerlin; Fabio Donati; Aparajita Singha; Romana Baltic; Stefano Rusponi; Katharina Diller; F. Patthey; Marina Pivetta; Yanhua Lan; Svetlana Klyatskaya; Mario Ruben; Harald Brune; Jan Dreiser
TbPc2 single-molecule magnets adsorbed on a magnesium oxide tunnel barrier exhibit record magnetic remanence, record hysteresis opening, perfect out-of-plane alignment of the magnetic easy axes, and self-assembly into a well-ordered layer.
ACS Nano | 2014
Jan Dreiser; Christian Wäckerlin; Md. Ehesan Ali; Cinthia Piamonteze; Fabio Donati; Aparajita Singha; Kasper S. Pedersen; Stefano Rusponi; Jesper Bendix; Peter M. Oppeneer; Thomas A. Jung; Harald Brune
We present a comprehensive study of Er(trensal) single-ion magnets deposited in ultrahigh vacuum onto metallic surfaces. X-ray photoelectron spectroscopy reveals that the molecular structure is preserved after sublimation, and that the molecules are physisorbed on Au(111) while they are chemisorbed on a Ni thin film on Cu(100) single-crystalline surfaces. X-ray magnetic circular dichroism (XMCD) measurements performed on Au(111) samples covered with molecular monolayers held at temperatures down to 4 K suggest that the easy axes of the strongly anisotropic molecules are randomly oriented. Furthermore XMCD indicates a weak antiferromagnetic exchange coupling between the single-ion magnets and the ferromagnetic Ni/Cu(100) substrate. For the latter case, spin-Hamiltonian fits to the XMCD M(H) suggest a significant structural distortion of the molecules. Scanning tunneling microscopy reveals that the molecules are mobile on Au(111) at room temperature, whereas they are more strongly attached on Ni/Cu(100). X-ray photoelectron spectroscopy results provide evidence for the chemical bonding between Er(trensal) molecules and the Ni substrate. Density functional theory calculations support these findings and, in addition, reveal the most stable adsorption configuration on Ni/Cu(100) as well as the Ni-Er exchange path. Our study suggests that the magnetic moment of Er(trensal) can be stabilized via suppression of quantum tunneling of magnetization by exchange coupling to the Ni surface atoms. Moreover, it opens up pathways toward optical addressing of surface-deposited single-ion magnets.
Nano Letters | 2016
Aparajita Singha; Fabio Donati; Christian Wäckerlin; Romana Baltic; Jan Dreiser; Marina Pivetta; Stefano Rusponi; Harald Brune
We report magnetic hysteresis in Er clusters on Cu(111) starting from the size of three atoms. Combining X-ray magnetic circular dichroism, scanning tunneling microscopy, and mean-field nucleation theory, we determine the size-dependent magnetic properties of the Er clusters. Er atoms and dimers are paramagnetic, and their easy magnetization axes are oriented in-plane. In contrast, trimers and bigger clusters exhibit magnetic hysteresis at 2.5 K with a relaxation time of 2 min at 0.1 T and out-of-plane easy axis. This appearance of magnetic stability for trimers coincides with their enhanced structural stability.
Advanced Materials | 2016
Christian Wäckerlin; Fabio Donati; Aparajita Singha; Romana Baltic; Stefano Rusponi; Katharina Diller; F. Patthey; Marina Pivetta; Yanhua Lan; Svetlana Klyatskaya; Mario Ruben; Harald Brune; Jan Dreiser
In Tb(Pc)2 single-molecule magnets, where Pc is phthalocyanine, adsorbed on magnesium oxide, the fluctuations of the terbium magnetic moment are strongly suppressed in contrast to the adsorption on silver. On page 5195, J. Dreiser and co-workers investigate that the molecules are perfectly organized by self-assembly, as seen in the scanning tunnelling microscopy image (top part of the design). The molecules are probed by circularly polarized X-rays depicted as green spirals.
Physical Review Letters | 2014
Fabio Donati; Aparajita Singha; Sebastian Stepanow; Christian Wäckerlin; Jan Dreiser; Pietro Gambardella; Stefano Rusponi; Harald Brune
ACS Chemical Biology | 2014
Tomas Laursen; Aparajita Singha; Nicolai Rantzau; Marijonas Tutkus; Jonas Borch; Per Hedegård; Dimitrios Stamou; Birger Lindberg Møller; Nikos S. Hatzakis
Nano Letters | 2016
Romana Baltic; Marina Pivetta; Fabio Donati; Christian Wäckerlin; Aparajita Singha; Jan Dreiser; Stefano Rusponi; Harald Brune
Chemical Communications | 2015
Christian Wäckerlin; Fabio Donati; Aparajita Singha; Romana Baltic; Anne-Christine Uldry; Bernard Delley; Stefano Rusponi; Jan Dreiser
Physical Review B | 2017
Aparajita Singha; Romana Baltic; Fabio Donati; Christian Wäckerlin; Jan Dreiser; Luca Persichetti; Sebastian Stepanow; Pietro Gambardella; Stefano Rusponi; Harald Brune