Fabio Donati
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fabio Donati.
Science | 2014
Ileana G. Rau; Susanne Baumann; Stefano Rusponi; Fabio Donati; Sebastian Stepanow; Luca Gragnaniello; Jan Dreiser; Cinthia Piamonteze; F. Nolting; Shruba Gangopadhyay; Oliver R. Albertini; R. M. Macfarlane; Christopher P. Lutz; B. A. Jones; Pietro Gambardella; Andreas J. Heinrich; Harald Brune
Maximizing atomic magnetic memory A study of the magnetic response of cobalt atoms adsorbed on oxide surfaces may lead to much denser storage of data. In hard drives, data are stored as magnetic bits; the magnetic field pointing up or down corresponds to storing a zero or a one. The smallest bit possible would be a single atom, but the magnetism of a single atom —its spin—has to be stabilized by interactions with heavy elements or surfaces through an effect called spin-orbit coupling. Rau et al. (see the Perspective by Khajetoorians and Wiebe) built a model system in pursuit of single-atom bits—cobalt atoms adsorbed on magnesium oxide. At temperatures approaching absolute zero, the stabilization of the spins magnetic direction reached the maximum that is theoretically possible. Science, this issue p. 988; see also p. 976 A cobalt atom bound to a single oxygen site on magnesia has the maximum magnetic anisotropy allowed for a transition metal [Also see Perspective by Khajetoorians and Wiebe] Designing systems with large magnetic anisotropy is critical to realize nanoscopic magnets. Thus far, the magnetic anisotropy energy per atom in single-molecule magnets and ferromagnetic films remains typically one to two orders of magnitude below the theoretical limit imposed by the atomic spin-orbit interaction. We realized the maximum magnetic anisotropy for a 3d transition metal atom by coordinating a single Co atom to the O site of an MgO(100) surface. Scanning tunneling spectroscopy reveals a record-high zero-field splitting of 58 millielectron volts as well as slow relaxation of the Co atom’s magnetization. This striking behavior originates from the dominating axial ligand field at the O adsorption site, which leads to out-of-plane uniaxial anisotropy while preserving the gas-phase orbital moment of Co, as observed with x-ray magnetic circular dichroism.
Science | 2016
Fabio Donati; Stefano Rusponi; Sebastian Stepanow; Christian Wäckerlin; Aparajita Singha; Luca Persichetti; Romana Baltic; Katharina Diller; F. Patthey; Edgar Fernandes; Jan Dreiser; Ž. Šljivančanin; Kurt Kummer; Corneliu Nistor; Pietro Gambardella; Harald Brune
Stable magnets from single atoms An important goal in molecular magnetism is to create a permanent magnet from a single atom. Metal atoms adsorbed on surfaces can develop strong magnetization in an applied field (paramagnetism). Donati et al. show that single holmium atoms adsorbed on a magnesium oxide film grown on a silver substrate show residual magnetism for temperatures up to 30 K and bistabilty that lasts for 1500 s at 10 K (see the Perspective by Khajetoorians and Heinrich). The atom avoids spin relaxation by a combination of quantum-state symmetry and by the oxide film preventing the spin from interacting with the underlying metal via tunneling. Science, this issue p. 318; see also p. 296 A single holmium atom on a magnesium oxide film can retain its magnetic moment up to 30 kelvin. [Also see Perspective by Khajetoorians and Heinrich] A permanent magnet retains a substantial fraction of its saturation magnetization in the absence of an external magnetic field. Realizing magnetic remanence in a single atom allows for storing and processing information in the smallest unit of matter. We show that individual holmium (Ho) atoms adsorbed on ultrathin MgO(100) layers on Ag(100) exhibit magnetic remanence up to a temperature of 30 kelvin and a relaxation time of 1500 seconds at 10 kelvin. This extraordinary stability is achieved by the realization of a symmetry-protected magnetic ground state and by decoupling the Ho spin from the underlying metal by a tunnel barrier.
Advanced Materials | 2016
Christian Wäckerlin; Fabio Donati; Aparajita Singha; Romana Baltic; Stefano Rusponi; Katharina Diller; F. Patthey; Marina Pivetta; Yanhua Lan; Svetlana Klyatskaya; Mario Ruben; Harald Brune; Jan Dreiser
TbPc2 single-molecule magnets adsorbed on a magnesium oxide tunnel barrier exhibit record magnetic remanence, record hysteresis opening, perfect out-of-plane alignment of the magnetic easy axes, and self-assembly into a well-ordered layer.
Physical Review Letters | 2015
Susanne Baumann; Fabio Donati; Sebastian Stepanow; Stefano Rusponi; W. Paul; Shruba Gangopadhyay; Ileana G. Rau; Giulia E. Pacchioni; Luca Gragnaniello; Marina Pivetta; Jan Dreiser; Cinthia Piamonteze; Christopher P. Lutz; R. M. Macfarlane; B. A. Jones; Pietro Gambardella; Andreas J. Heinrich; Harald Brune
We report on the magnetic properties of individual Fe atoms deposited on MgO(100) thin films probed by x-ray magnetic circular dichroism and scanning tunneling spectroscopy. We show that the Fe atoms have strong perpendicular magnetic anisotropy with a zero-field splitting of 14.0±0.3 meV/atom. This is a factor of 10 larger than the interface anisotropy of epitaxial Fe layers on MgO and the largest value reported for Fe atoms adsorbed on surfaces. The interplay between the ligand field at the O adsorption sites and spin-orbit coupling is analyzed by density functional theory and multiplet calculations, providing a comprehensive model of the magnetic properties of Fe atoms in a low-symmetry bonding environment.
ACS Nano | 2014
Jan Dreiser; Christian Wäckerlin; Md. Ehesan Ali; Cinthia Piamonteze; Fabio Donati; Aparajita Singha; Kasper S. Pedersen; Stefano Rusponi; Jesper Bendix; Peter M. Oppeneer; Thomas A. Jung; Harald Brune
We present a comprehensive study of Er(trensal) single-ion magnets deposited in ultrahigh vacuum onto metallic surfaces. X-ray photoelectron spectroscopy reveals that the molecular structure is preserved after sublimation, and that the molecules are physisorbed on Au(111) while they are chemisorbed on a Ni thin film on Cu(100) single-crystalline surfaces. X-ray magnetic circular dichroism (XMCD) measurements performed on Au(111) samples covered with molecular monolayers held at temperatures down to 4 K suggest that the easy axes of the strongly anisotropic molecules are randomly oriented. Furthermore XMCD indicates a weak antiferromagnetic exchange coupling between the single-ion magnets and the ferromagnetic Ni/Cu(100) substrate. For the latter case, spin-Hamiltonian fits to the XMCD M(H) suggest a significant structural distortion of the molecules. Scanning tunneling microscopy reveals that the molecules are mobile on Au(111) at room temperature, whereas they are more strongly attached on Ni/Cu(100). X-ray photoelectron spectroscopy results provide evidence for the chemical bonding between Er(trensal) molecules and the Ni substrate. Density functional theory calculations support these findings and, in addition, reveal the most stable adsorption configuration on Ni/Cu(100) as well as the Ni-Er exchange path. Our study suggests that the magnetic moment of Er(trensal) can be stabilized via suppression of quantum tunneling of magnetization by exchange coupling to the Ni surface atoms. Moreover, it opens up pathways toward optical addressing of surface-deposited single-ion magnets.
ACS Nano | 2016
Jan Dreiser; Giulia E. Pacchioni; Fabio Donati; Luca Gragnaniello; A. Cavallin; Kasper S. Pedersen; Jesper Bendix; Bernard Delley; Marina Pivetta; Stefano Rusponi; Harald Brune
We have studied Er(trensal) single-ion magnets adsorbed on graphene/Ru(0001), on graphene/Ir(111), and on bare Ru(0001) by scanning tunneling microscopy and X-ray absorption spectroscopy. On graphene, the molecules self-assemble into dense and well-ordered islands with their magnetic easy axes perpendicular to the surface. In contrast, on bare Ru(0001), the molecules are disordered, exhibiting only weak directional preference of the easy magnetization axis. The perfect out-of-plane alignment of the easy axes on graphene results from the molecule-molecule interaction, which dominates over the weak adsorption on the graphene surface. Our results demonstrate that the net magnetic properties of a molecular submonolayer can be tuned using a graphene spacer layer, which is attractive for hybrid molecule-inorganic spintronic devices.
ACS Nano | 2016
Alessandro Barla; V. Bellini; Stefano Rusponi; Paolo Ferriani; Marina Pivetta; Fabio Donati; Franco̧is Patthey; Luca Persichetti; Sanjoy K. Mahatha; M. Papagno; Cinthia Piamonteze; Simon Fichtner; S. Heinze; Pietro Gambardella; Harald Brune; C. Carbone
We report on the magnetic coupling between isolated Co atoms as well as small Co islands and Ni(111) mediated by an epitaxial graphene layer. X-ray magnetic circular dichroism and scanning tunneling microscopy combined with density functional theory calculations reveal that Co atoms occupy two distinct adsorption sites, with different magnetic coupling to the underlying Ni(111) surface. We further report a transition from an antiferromagnetic to a ferromagnetic coupling with increasing Co cluster size. Our results highlight the extreme sensitivity of the exchange interaction mediated by graphene to the adsorption site and to the in-plane coordination of the magnetic atoms.
Nano Letters | 2016
Aparajita Singha; Fabio Donati; Christian Wäckerlin; Romana Baltic; Jan Dreiser; Marina Pivetta; Stefano Rusponi; Harald Brune
We report magnetic hysteresis in Er clusters on Cu(111) starting from the size of three atoms. Combining X-ray magnetic circular dichroism, scanning tunneling microscopy, and mean-field nucleation theory, we determine the size-dependent magnetic properties of the Er clusters. Er atoms and dimers are paramagnetic, and their easy magnetization axes are oriented in-plane. In contrast, trimers and bigger clusters exhibit magnetic hysteresis at 2.5 K with a relaxation time of 2 min at 0.1 T and out-of-plane easy axis. This appearance of magnetic stability for trimers coincides with their enhanced structural stability.
ACS Nano | 2017
Giulia E. Pacchioni; Marina Pivetta; Luca Gragnaniello; Fabio Donati; G. Autès; Oleg V. Yazyev; Stefano Rusponi; Harald Brune
Iron atoms adsorbed on a Cu(111) surface and buried under polyphenyl dicarbonitrile molecules exhibit strongly spatial anisotropic Kondo features with directionally dependent Kondo temperatures and line shapes, as evidenced by scanning tunneling spectroscopy. First-principles calculations find nearly full polarization for the half-filled Fe 3dxz and 3dyz orbitals, which therefore can give rise to Kondo screening with the experimentally observed directional dependence and distinct Kondo temperatures. X-ray absorption spectroscopy and X-ray magnetic circular dichroism measurements confirm that the spin in both channels is effectively Kondo-screened. At ideal Fe coverage, these two-orbital Kondo impurities are arranged in a self-assembled honeycomb superlattice.
Advanced Materials | 2016
Christian Wäckerlin; Fabio Donati; Aparajita Singha; Romana Baltic; Stefano Rusponi; Katharina Diller; F. Patthey; Marina Pivetta; Yanhua Lan; Svetlana Klyatskaya; Mario Ruben; Harald Brune; Jan Dreiser
In Tb(Pc)2 single-molecule magnets, where Pc is phthalocyanine, adsorbed on magnesium oxide, the fluctuations of the terbium magnetic moment are strongly suppressed in contrast to the adsorption on silver. On page 5195, J. Dreiser and co-workers investigate that the molecules are perfectly organized by self-assembly, as seen in the scanning tunnelling microscopy image (top part of the design). The molecules are probed by circularly polarized X-rays depicted as green spirals.