Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Appavu Chandrasekaran is active.

Publication


Featured researches published by Appavu Chandrasekaran.


Drug Metabolism and Disposition | 2009

Metabolic Disposition of [14C]Bazedoxifene in Healthy Postmenopausal Women

Appavu Chandrasekaran; William E. McKeand; Pamela Sullivan; William DeMaio; Randall Stoltz

Bazedoxifene is a selective estrogen receptor modulator under development for the prevention and treatment of osteoporosis. The disposition of [14C]bazedoxifene was determined in six healthy postmenopausal women after administration of a single oral dose of 20 mg (200 μCi). After dosing, blood was collected at frequent intervals, and urine and fecal samples were collected for up to 10 days. Aliquots of plasma, blood, urine, and fecal homogenates were analyzed for concentrations of radioactivity. Bazedoxifene metabolite profiles in plasma and feces were determined by high-performance liquid chromatography with radioactivity flow detection; metabolite structures were confirmed by liquid chromatography-mass spectrometry. Bazedoxifene was rapidly absorbed, exhibiting a mean peak plasma concentration of 3.43 ng/ml at 1.2 h postdose. The total mean recovery of the radioactive dose in excreta was 85.6%, with the majority recovered in feces (84.7%) and only a small fraction (0.81%) in urine. Radiochromatograms of plasma revealed that glucuronidation was the major metabolic pathway; little or no cytochrome P450-mediated metabolism was evident. The majority of circulating radioactivity was constituted by metabolites, with bazedoxifene-5-glucuronide being the predominant metabolite (up to 95%). Bazedoxifene-4′-glucuronide was a minor metabolite (up to 20%), and unchanged bazedoxifene represented 0 to 13% of the radioactivity in most plasma samples. Unchanged bazedoxifene was the major radioactive component in feces, however, reflecting unabsorbed drug and/or glucuronides that were hydrolyzed by intestinal bacterial enzymes. [14C]Bazedoxifene was generally well tolerated. These findings demonstrated that, after oral administration in healthy postmenopausal women, bazedoxifene was rapidly absorbed, metabolized via glucuronidation, and excreted predominantly in feces.


Drug Metabolism and Disposition | 2010

Characterization of HKI-272 Covalent Binding to Human Serum Albumin

Jianyao Wang; Xiao Xian Li-Chan; Jim Atherton; Lin Deng; Robert Espina; Linning Yu; Peter M. Horwatt; Steven Ross; Susan Lockhead; Syed Ahmad; Appavu Chandrasekaran; Aram Oganesian; Abdul Mutlib; Rasmy Talaat

The study was initiated as an observation of incomplete extraction recovery of N-(4-(3-chloro-4-(2-pyridinylmethoxy)anilino)-3-cyano-7-ethoxy-6-quinolyl)-4-(dimethylamino)-2-butenamide (HKI-272) from human plasma. The objective of this study was to 1) identify the binding site(s) of HKI-272 to human plasma protein(s); 2) characterize the nature of the binding; and 3) evaluate the potential reversibility of the covalent binding. After incubation of [14C]HKI-272 with human plasma, the mixture was directly injected on liquid chromatography/mass spectrometry (LC/MS), and an intact molecular mass of HKI-272 human serum albumin (HSA) adduct was determined to be 66,999 Da, which is 556 Da (molecular mass of HKI-272) larger than the measured molecular mass of HSA (66,443 Da). For peptide mapping, the incubation mixture was separated with SDS-polyacrylamide gel electrophoresis followed by tryptic digestion combined with LC/tandem MS. A radioactive peptide fragment, LDELRDEGKASSAK [amino acid (AA) residue 182–195 of albumin], was confirmed to covalently bind to HKI-272. In addition, after HCl hydrolysis, a radioactive HKI-272-lysine adduct was identified by LC/MS. After combining the results of tryptic digestion and HCl hydrolysis, the AA residue of Lys190 of HSA was confirmed to covalently bind to HKI-272. A standard HKI-272-lysine was synthesized and characterized by NMR. The data showed that the adduct was formed via Michael addition with the ε-amine of lysine attacking to the β-carbon of the amide moiety of HKI-272. Furthermore, reversibility of the covalent binding of HKI-272 to HSA was shown when a gradual release of HKI-272 was observed from protein pellet of HKI-272-treated human plasma after resuspension in phosphate buffer, pH 7.4, at 37°C for 18 h.


Chemical Research in Toxicology | 2012

Alternate Strategies to Obtain Mass Balance without the Use of Radiolabeled Compounds: Application of Quantitative Fluorine (19F) Nuclear Magnetic Resonance (NMR) Spectroscopy in Metabolism Studies

Abdul Mutlib; Robert Espina; James Atherton; Jianyao Wang; Rasmy Talaat; Appavu Chandrasekaran

Nuclear magnetic resonance (NMR) spectroscopy is playing an increasingly important role in the quantitation of small and large molecules. Recently, we demonstrated that (1)H NMR could be used to quantitate drug metabolites isolated in submilligram quantities from biological sources. It was shown that these metabolites, once quantitated by NMR, were suitable to be used as reference standards in quantitative LC/MS-based assays, hence circumventing the need for radiolabeled material or synthetic standards to obtain plasma exposure estimates in humans and preclinical species. The quantitative capabilities of high-field NMR is further demonstrated in the current study by obtaining the mass balance of fluorinated compounds using (19)F-NMR. Two fluorinated compounds which were radio-labeled with carbon-14 on metabolically stable positions were dosed in rats and urine and feces collected. The mass balance of the compounds was obtained initially by counting the radioactivity present in each sample. Subsequently, the same sets of samples were analyzed by (19)F-NMR, and the concentrations determined by this method were compared with data obtained using radioactivity counting. It was shown that the two methods produced comparable values. To demonstrate the value of this analytical technique in drug discovery, a fluorinated compound was dosed intravenously in dogs and feces and urine collected. Initial profiling of samples showed that this compound was excreted mainly unchanged in feces, and hence, an estimate of mass balance was obtained using (19)F-NMR. The data obtained by this method was confirmed by additional quantitative studies using mass spectrometry. Hence cross-validations of the quantitative (19)F-NMR method by radioactivity counting and mass spectrometric analysis were demonstrated in this study. A strategy outlining the use of fluorinated compounds in conjunction with (19)F-NMR to understand their routes of excretion or mass balance in animals is proposed. These studies demonstrate that quantitative (19)F-NMR could be used as an alternate technique to obtain an estimate of the mass balance of fluorinated compounds, especially in early drug development where attrition of the compounds is high, and cost savings could be realized through the use of such a technique rather than employing radioactive compounds. The potential application of qNMR in conducting early human ADME studies with fluorinated compounds is also discussed.


Drug Metabolism and Disposition | 2010

In Vitro Metabolism and Identification of Human Enzymes Involved in the Metabolism of Methylnaltrexone

Zeen Tong; Appavu Chandrasekaran; Hongshan Li; Yakov Rotshteyn; John C. L. Erve; William DeMaio; Rasmy Talaat; Theresa Hultin

Methylnaltrexone (MNTX) is a peripherally acting μ-opioid receptor antagonist and is currently indicated for the treatment of opioid-induced constipation in patients with advanced illness who are receiving palliative care, when response to laxative therapy has not been sufficient. Sulfation to MNTX-3-sulfate (M2) and carbonyl reduction to methyl-6α-naltrexol (M4) and methyl-6β-naltrexol (M5) are the primary metabolic pathways for MNTX in humans. The objectives of this study were to investigate MNTX in vitro metabolism in human and nonclinical species and to identify the human enzymes involved in MNTX metabolism. Of the five commercially available sulfotransferases investigated, only SULT2A1 and SULT1E1 catalyzed M2 formation. Formation of M4 and M5 was catalyzed by NADPH-dependent hepatic cytosolic enzymes, which were identified using selective chemical inhibitors (10 and 100 μM) for aldo-keto reductase (AKR) isoforms, short-chain dehydrogenase/reductase including carbonyl reductase, alcohol dehydrogenase, and quinone oxidoreductase. The results were then compared with the effects of the same inhibitors on 6β-naltrexol formation from naltrexone, a structural analog of MNTX, which is catalyzed mainly by AKR1C4. The AKR1C inhibitor phenolphthalein inhibited MNTX and naltrexone reduction up to 98%. 5β-Cholanic acid 3α,7α-diol, the AKR1C2 inhibitor, and medroxyprogesterone acetate, an inhibitor of AKR1C1, AKR1C2, and AKR1C4, inhibited MNTX reduction up to 67%. Other inhibitors were less potent. In conclusion, the carbonyl reduction of MNTX to M4 and M5 in hepatic cytosol was consistent with previous in vivo observations. AKR1C4 appeared to play a major role in the carbonyl reduction of MNTX, although multiple enzymes in the AKR1C subfamily may be involved. Human SULT2A1 and SULT1E1 were involved in MNTX sulfation.


Drug Metabolism and Disposition | 2007

In Vitro Glucuronidation of Thyroxine and Triiodothyronine by Liver Microsomes and Recombinant Human UDP-Glucuronosyltransferases

Zeen Tong; Hongshan Li; Igor Goljer; Oliver J. McConnell; Appavu Chandrasekaran

Glucuronidation, which may take place on the phenolic hydroxyl and carboxyl groups, is a major pathway of metabolism for thyroxine (T4) and triiodothyronine (T3). In this study, a liquid chromatography/mass spectrometry (LC/MS) method was developed to separate phenolic and acyl glucuronides of T4 and T3. The method was used to collect the phenolic glucuronide of T4 for definitive characterization by NMR and to determine effects of incubation pH, species differences, and human UDP-glucuronosyltransferases (UGTs) involved in the formation of the glucuronides. Formation of T4 phenolic glucuronide was favored at pH 7.4, whereas formation of T4 acyl glucuronide was favored at pH 6.8. All the UGTs examined catalyzed the formation of T4 phenolic glucuronide except UGT1A4; the highest activity was detected with UGT1A3, UGT1A8, and UGT1A10, followed by UGT1A1 and UGT2B4. Formation of T3 phenolic glucuronide was observed in the order of UGT1A8 > UGT1A10 > UGT1A3 > UGT1A1; trace activity was observed with UGT1A6 and UGT1A9. UGT1A3 was the major isoform catalyzing the formation of T4 and T3 acyl glucuronides. In liver microsomes, phenolic glucuronidation was the highest in mice for T4 and in rats for T3 and lowest in monkeys for both T4 and T3. Acyl glucuronidation was highest in humans and lowest in mice for T4 and T3. Phenolic glucuronidation was higher than acyl glucuronidation for T4 in humans; in contrast, the acyl glucuronidation was slightly higher than phenolic glucuronidation for T3. UGT activities were lower toward T3 than T4 in all the species. The LC/MS method was a useful tool in studying glucuronidation of T4 and T3.


Drug Metabolism and Disposition | 2010

In vitro metabolism, permeability, and efflux of bazedoxifene in humans.

Li Shen; Syed Ahmad; Seonghee Park; William DeMaio; Aram Oganesian; Theresa Hultin; Peter Bungay; Appavu Chandrasekaran

Bazedoxifene (BZA) acetate, a novel estrogen receptor modulator being developed for the prevention and treatment of postmenopausal osteoporosis, undergoes extensive metabolism in women after oral administration. In this study, the in vitro metabolism of [14C]BZA was determined in human hepatocytes and hepatic and intestinal microsomes, and the UDP glucuronosyltransferase (UGT) isozymes involved in the glucuronidation of BZA were identified. In addition, BZA was evaluated for its potential as a substrate of P-glycoprotein (P-gp) transporter in Caco-2 cell monolayers. BZA was metabolized to two monoglucuronides, BZA-4′-glucuronide and BZA-5-glucuronide, in hepatocytes and in liver and intestinal microsomes including jejunum, duodenum, and ileum. Both BZA-4′-glucuronide and BZA-5-glucuronide were major metabolites in the intestinal microsomes, whereas BZA-4′-glucuronide was the predominant metabolite in liver microsomes and hepatocytes. The kinetic parameters of BZA-4′-glucuronide formation were determined in liver, duodenum, and jejunum microsomes and with UGT1A1, 1A8, and 1A10, the most active UGT isoforms involved in the glucuronidation of BZA, whereas those of BZA-5-glucuronide were determined with all the enzyme systems except in liver microsomes and in UGT1A1 because the formation of the BZA-5-glucuronide was too low. Km values in liver, duodenum, and jejunum microsomes and UGT1A1, 1A8, and 1A10, were similar and ranged from 5.1 to 33.1 μM for BZA-4′-glucuronide formation and from 2.5 to 11.1 μM for BZA-5-glucuronide formation. Vmax values ranged from 0.8 to 2.9 nmol/(min · mg) protein for BZA-4′-glucuronide and from 0.1 to 1.2 nmol/(min · mg) protein for BZA-5-glucuronide. In Caco-2 cells, BZA appeared to be a P-gp substrate.


Drug Metabolism and Disposition | 2010

Metabolism of Intravenous Methylnaltrexone in Mice, Rats, Dogs, and Humans

Appavu Chandrasekaran; Zeen Tong; Hongshan Li; John C. L. Erve; William DeMaio; Igor Goljer; Oliver J. McConnell; Yakov Rotshteyn; Theresa Hultin; Rasmy Talaat

Methylnaltrexone (MNTX), a selective μ-opioid receptor antagonist, functions as a peripherally acting receptor antagonist in tissues of the gastrointestinal tract. This report describes the metabolic fate of [3H]MNTX or [14C]MNTX bromide in mice, rats, dogs, and humans after intravenous administration. Separation and identification of plasma and urinary MNTX metabolites was achieved by high-performance liquid chromatography-radioactivity detection and liquid chromatography/mass spectrometry. The structures of the most abundant human metabolites were confirmed by chemical synthesis and NMR spectroscopic analysis. Analysis of radioactivity in plasma and urine showed that MNTX underwent two major pathways of metabolism in humans: sulfation of the phenolic group to MNTX-3-sulfate (M2) and reduction of the carbonyl group to two epimeric alcohols, methyl-6α-naltrexol (M4) and methyl-6β-naltrexol (M5). Neither naltrexone nor its metabolite 6β-naltrexol were detected in human plasma after administration of MNTX, confirming an earlier observation that N-demethylation was not a metabolic pathway of MNTX in humans. The urinary metabolite profiles in humans were consistent with plasma profiles. In mice, the circulating and urinary metabolites included M5, MNTX-3-glucuronide (M9), 2-hydroxy-3-O-methyl MNTX (M6), and its glucuronide (M10). M2, M5, M6, and M9 were observed in rats. Dogs produced only one metabolite, M9. In conclusion, MNTX was not extensively metabolized in humans. Conversion to methyl-6-naltrexol isomers (M4 and M5) and M2 were the primary pathways of metabolism in humans. MNTX was metabolized to a higher extent in mice than in rats, dogs, and humans. Glucuronidation was a major metabolic pathway in mice, rats, and dogs, but not in humans. Overall, the data suggested species differences in the metabolism of MNTX.


Drug Metabolism Letters | 2010

Reversible Covalent Binding of Neratinib to Human Serum Albumin In Vitro

Appavu Chandrasekaran; Li Shen; Susan Lockhead; Aram Oganesian; Jianyao Wang

Neratinib (HKI-272), an irreversible inhibitor of Her 2 tyrosine kinase, is currently in development as an alternative for first and second line therapy in metastatic breast cancer patients who overexpress Her 2. Following incubation of [(14)C]neratinib in control human plasma at 37°C for 6 hours, about 60% to 70% of the radioactivity was not extractable, due to covalent binding to albumin. In this study, factors that could potentially affect the covalent binding of neratinib to plasma proteins, specifically to albumin were investigated. When [(14)C]neratinib was incubated at 10 μg/mL in human serum albumin (HSA) or control human plasma, the percent binding increased with time; the highest percentages of binding (46 and 67%, respectively) were observed at 6 hours, the longest duration of incubation examined. Binding increased with increasing temperature; the highest percentages of binding to HSA or human plasma (59 and 78%) were observed at 45°C, the highest temperature tested. The binding also increased with increasing pH of incubation; the highest percentages of binding (56 and 65%) were observed at pH 8.5, the highest pH value tested. The percentages of binding were similar (53% to 57%) when a wide range of concentrations of [(14)C]neratinib (50 ng/mL to 10 μg/mL) were incubated with human plasma at 37°C for 6 hours, indicating that the binding was independent of the substrate concentration, especially in the therapeutic range (50 to 200 ng/mL). When human plasma proteins containing covalently bound [(14)C]neratinb were suspended in a 10 fold volume of phosphate buffer at pH 4.0, 6.0, 7.4, and 8.5, and further incubated at 37°C for ~ 16 hours, about 45%, 44%, 32%, and 12% of the total radioactivity, respectively, was released as unchanged [(14)C]neratinib, indicating that the binding is reversible in nature, with more released at pH 7.4 and below. In conclusion, the covalent binding of neratinib to serum albumin is pH, time and temperature dependent, but not substrate concentration dependent, especially in the therapeutic range. Acidification and incubation of human plasma proteins that contained covalently bound [(14)C]neratinib leads to the release of the drug, indicating that the binding is reversible in nature. It is reasonable to speculate that the release of neratinib from human serum albumin provides a transport system leading to release of neratinib in the more acidic environment of the tumor.


Drug Metabolism and Disposition | 2010

Species Differences in the Formation of Vabicaserin Carbamoyl Glucuronide

Zeen Tong; Appavu Chandrasekaran; William DeMaio; Ronald Jordan; Hongshan D Li; Robin D. Moore; Nagaraju Poola; Peter Burghart; Theresa Hultin

Vabicaserin is a potent 5-hydroxtryptamine 2C full agonist with therapeutic potential for a wide array of psychiatric disorders. Metabolite profiles indicated that vabicaserin was extensively metabolized via carbamoyl glucuronidation after oral administration in humans. In the present study, the differences in the extent of vabicaserin carbamoyl glucuronide (CG) formation in humans and in animals used for safety assessment were investigated. After oral dosing, the systemic exposure ratios of CG to vabicaserin were approximately 12 and up to 29 in monkeys and humans, respectively, and the ratios of CG to vabicaserin were approximately 1.5 and 1.7 in mice and dogs, respectively. These differences in systemic levels of CG are likely related to species differences in the rate and extent of CG formation and elimination. Whereas CG was the predominant circulating metabolite in humans and a major metabolite in mice, dogs, and monkeys, it was a relatively minor metabolite in rats, in which oxidative metabolism was the major metabolic pathway. Although the CG was not detected in plasma or urine of rats, approximately 5% of the dose was excreted in bile as CG in the 24-h collection postdose, indicating the rat had the metabolic capability of producing the CG. In vitro, in a CO2-enriched environment, the CG was the predominant metabolite in dog and human liver microsomes, a major metabolite in monkey and mice, and only a very minor metabolite in rats. Carbamoyl glucuronidation and hydroxylation had similar contributions to vabicaserin metabolism in mouse and monkey liver microsomes. However, only trace amounts of CG were formed in rat liver microsomes, and other metabolites were more prominent than the CG. In conclusion, significant differences in the extent of formation of the CG were observed among the various species examined. The exposure ratios of CG to vabicaserin were highest in humans, followed by monkeys, then mice and dogs, and lowest in rats, and the in vitro metabolite profiles generally correlated well with the in vivo metabolites.


Drug Metabolism and Disposition | 2006

NMR CHARACTERIZATION OF AN S-LINKED GLUCURONIDE METABOLITE OF THE POTENT, NOVEL, NONSTEROIDAL PROGESTERONE AGONIST TANAPROGET

Kelly Keating; Oliver McConnell; Yingru Zhang; Li Shen; William DeMaio; Larry M. Mallis; Sayed Elmarakby; Appavu Chandrasekaran

Tanaproget is a first-in-class nonsteroidal progesterone receptor agonist that is being investigated for use in contraception. A major in vitro and in vivo metabolite of tanaproget formed in humans was initially characterized as a glucuronide of tanaproget. However, whether the glucuronide was linked to the nitrogen or sulfur of the benzoxazine-2-thione group in tanaproget could not be determined by liquid chromatography/mass spectrometry (LC/MS) and LC-tandem mass spectrometry analysis. To obtain additional structural details for this metabolite, additional quantities were generated from rat liver microsomal incubations and purified by high-performance liquid chromatography (HPLC) for NMR analysis. The NMR data for the metabolite confirmed that the glucuronide was covalently bound to either the sulfur or the nitrogen of the benzoxazine-2-thione moiety. The lack of key through-bond (scalar) and through-space (dipolar) one-dimensional (1D) and two-dimensional (2D) NMR couplings and correlations in the metabolite spectra (due primarily to low sample concentration) precluded an unambiguous structure elucidation. Subsequent synthesis of the S- and N-glucuronides of tanaproget from tanaproget facilitated the unambiguous regio- and stereochemical assignment of the metabolite by comparison of 1D NMR chemical shifts and scalar coupling constants, 2D NMR correlations, and HPLC and LC/MS characteristics between the synthetic compounds and the metabolite. From extensive comparison of the spectral and chromatographic data of the microsomally derived metabolite and the synthetic compounds, the metabolite has been determined to be the S-(β)-d-glucuronide of tanaproget.

Collaboration


Dive into the Appavu Chandrasekaran's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge