Robert Espina
Bristol-Myers Squibb
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert Espina.
Drug Metabolism and Disposition | 2010
Jianyao Wang; Xiao Xian Li-Chan; Jim Atherton; Lin Deng; Robert Espina; Linning Yu; Peter M. Horwatt; Steven Ross; Susan Lockhead; Syed Ahmad; Appavu Chandrasekaran; Aram Oganesian; Abdul Mutlib; Rasmy Talaat
The study was initiated as an observation of incomplete extraction recovery of N-(4-(3-chloro-4-(2-pyridinylmethoxy)anilino)-3-cyano-7-ethoxy-6-quinolyl)-4-(dimethylamino)-2-butenamide (HKI-272) from human plasma. The objective of this study was to 1) identify the binding site(s) of HKI-272 to human plasma protein(s); 2) characterize the nature of the binding; and 3) evaluate the potential reversibility of the covalent binding. After incubation of [14C]HKI-272 with human plasma, the mixture was directly injected on liquid chromatography/mass spectrometry (LC/MS), and an intact molecular mass of HKI-272 human serum albumin (HSA) adduct was determined to be 66,999 Da, which is 556 Da (molecular mass of HKI-272) larger than the measured molecular mass of HSA (66,443 Da). For peptide mapping, the incubation mixture was separated with SDS-polyacrylamide gel electrophoresis followed by tryptic digestion combined with LC/tandem MS. A radioactive peptide fragment, LDELRDEGKASSAK [amino acid (AA) residue 182–195 of albumin], was confirmed to covalently bind to HKI-272. In addition, after HCl hydrolysis, a radioactive HKI-272-lysine adduct was identified by LC/MS. After combining the results of tryptic digestion and HCl hydrolysis, the AA residue of Lys190 of HSA was confirmed to covalently bind to HKI-272. A standard HKI-272-lysine was synthesized and characterized by NMR. The data showed that the adduct was formed via Michael addition with the ε-amine of lysine attacking to the β-carbon of the amide moiety of HKI-272. Furthermore, reversibility of the covalent binding of HKI-272 to HSA was shown when a gradual release of HKI-272 was observed from protein pellet of HKI-272-treated human plasma after resuspension in phosphate buffer, pH 7.4, at 37°C for 18 h.
Chemical Research in Toxicology | 2012
Abdul Mutlib; Robert Espina; James Atherton; Jianyao Wang; Rasmy Talaat; Appavu Chandrasekaran
Nuclear magnetic resonance (NMR) spectroscopy is playing an increasingly important role in the quantitation of small and large molecules. Recently, we demonstrated that (1)H NMR could be used to quantitate drug metabolites isolated in submilligram quantities from biological sources. It was shown that these metabolites, once quantitated by NMR, were suitable to be used as reference standards in quantitative LC/MS-based assays, hence circumventing the need for radiolabeled material or synthetic standards to obtain plasma exposure estimates in humans and preclinical species. The quantitative capabilities of high-field NMR is further demonstrated in the current study by obtaining the mass balance of fluorinated compounds using (19)F-NMR. Two fluorinated compounds which were radio-labeled with carbon-14 on metabolically stable positions were dosed in rats and urine and feces collected. The mass balance of the compounds was obtained initially by counting the radioactivity present in each sample. Subsequently, the same sets of samples were analyzed by (19)F-NMR, and the concentrations determined by this method were compared with data obtained using radioactivity counting. It was shown that the two methods produced comparable values. To demonstrate the value of this analytical technique in drug discovery, a fluorinated compound was dosed intravenously in dogs and feces and urine collected. Initial profiling of samples showed that this compound was excreted mainly unchanged in feces, and hence, an estimate of mass balance was obtained using (19)F-NMR. The data obtained by this method was confirmed by additional quantitative studies using mass spectrometry. Hence cross-validations of the quantitative (19)F-NMR method by radioactivity counting and mass spectrometric analysis were demonstrated in this study. A strategy outlining the use of fluorinated compounds in conjunction with (19)F-NMR to understand their routes of excretion or mass balance in animals is proposed. These studies demonstrate that quantitative (19)F-NMR could be used as an alternate technique to obtain an estimate of the mass balance of fluorinated compounds, especially in early drug development where attrition of the compounds is high, and cost savings could be realized through the use of such a technique rather than employing radioactive compounds. The potential application of qNMR in conducting early human ADME studies with fluorinated compounds is also discussed.
Drug Metabolism and Disposition | 2011
Abdul Mutlib; Robert Espina; Karthick Vishwanathan; Kathlene Babalola; Zecheng Chen; Christoph Martin Dehnhardt; Aranapakam Mudumbai Venkatesan; Tarek S. Mansour; Inder Chaudhary; Rasmy Talaat
It is important to gain an understanding of the pharmacological activities of metabolite(s) of compounds in development, especially if they are found in systemic circulation in humans. Pharmacological evaluation of metabolites is normally conducted with synthetic standards, which become available during various stages of drug development. However, the synthesis of metabolite standards may be protracted, taking anywhere from several weeks to months to be completed. This often slows down early pharmacological evaluation of metabolites. Once a metabolite(s) is found to possess comparable (or greater) pharmacological activity than the parent compound, additional studies are performed to better understand the implications of circulating pharmacologically active metabolite(s). To conduct some of these studies as early as possible without slowing the progression of a compound in development is important, especially if critical go or no-go decisions impinge on the outcomes from these studies. Early pharmacological evaluation of significant metabolites is hereby proposed to be conducted in the drug discovery stage so that all pertinent studies and information can be gathered in a timely manner for decision-making. It is suggested that these major metabolites be isolated, either from biological or chemical sources, and quantified appropriately. For biologically generated metabolites, NMR is proposed as the tool of choice to quantitate these metabolites before their evaluation in pharmacological assays. For metabolites that have the same UV characteristics as the parent compound, quantitation can be conducted using UV spectroscopy instead of NMR. In this article, we propose a strategy that could be used to determine the pharmacological activities of metabolites isolated in submilligram quantities.
Drug Metabolism and Disposition | 2010
Zeen Tong; Appavu Chandrasekaran; William DeMaio; Robert Espina; Wei Lu; Ronald Jordan
Vabicaserin is a potent 5-hydroxytryptamine2C agonist that is currently being developed for the treatment of the psychotic symptoms of schizophrenia. In this study, in vitro and in vivo metabolism of vabicaserin was evaluated in mice, rats, dogs, monkeys, and humans, and the structures of the metabolites were characterized by liquid chromatography/mass spectrometry and NMR spectroscopy. Vabicaserin underwent three major metabolic pathways in vitro: NADPH-dependent hydroxylation, NADPH-independent imine formation, and carbamoyl glucuronidation. After a single oral dose, vabicaserin was extensively metabolized in animals and humans, and its metabolites were mainly excreted via the urine in mice and rats. Along with the metabolites observed in vitro, secondary metabolism via oxidation and conjugation of the primary metabolites generated from the above-mentioned three pathways yielded a number of additional metabolites in vivo. Carbamoyl glucuronidation was the major metabolic pathway in humans but a minor pathway in rats. Although carbamoyl glucuronidation was a major metabolic pathway in mice, dogs, and monkeys, oxidative metabolism was also extensive in these species. Hydroxylation occurred in all species, although different regional selectivity was apparent. The imine pathway also appeared to be common to several species, because vabicaserin imine was observed in humans and hydroxyl imine metabolites were observed in mice, rats, and dogs. A nitrone metabolite of vabicaserin was observed in dogs and humans but not in other species. In conclusion, the major metabolic pathways for vabicaserin in humans and nonclinical safety species include carbamoyl glucuronidation, hydroxylation, formation of an imine, and a nitrone.
Journal of Labelled Compounds and Radiopharmaceuticals | 2017
Kai Cao; John Brailsford; Ming Yao; Janet Caceres-Cortes; Robert Espina; Samuel J. Bonacorsi
Two regioisomeric glucuronide metabolites of dapagliflozin (BMS-512148) were synthesized and used to elucidate the structures of dapagliflozin metabolites observed in human urine samples. The structures of the synthetic metabolites were assigned by heteronuclear multiple-bond correlation, ROESY, and total correlation spectroscopy experiments. Analogues of these metabolites containing carbon-13 as a stable label were also prepared for use as internal standards for the analysis of urine samples obtained from patients participating in clinical studies.
Chemical Research in Toxicology | 2009
Robert Espina; Linning Yu; Jianyao Wang; Zeen Tong; Sarvesh C. Vashishtha; Rasmy Talaat; Abdul Mutlib
Chemical Research in Toxicology | 2009
Karthick Vishwanathan; Kathlene Babalola; Jack Wang; Robert Espina; Linning Yu; Adedayo Adedoyin; Rasmy Talaat; Abdul Mutlib
Chemical Research in Toxicology | 2003
Christopher A. Reilly; William J. Ehlhardt; David A. Jackson; Palaniappan Kulanthaivel; Abdul Mutlib; Robert Espina; David E. Moody; Dennis J. Crouch; Garold S. Yost
Chemical Research in Toxicology | 2002
Abdul Mutlib; John Shockcor; Shiang-Yuan Chen; Robert Espina; Donald J. P. Pinto; Michael J. Orwat; Shimoga R. Prakash; Liang-Shang Gan
Journal of Pharmacology and Experimental Therapeutics | 2000
Abdul Mutlib; John Shockcor; Robert Espina; Nilsa Graciani; Alicia Du; Liang-Shang Gan