Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arata Honda is active.

Publication


Featured researches published by Arata Honda.


Journal of Biological Chemistry | 2002

Mouse sperm lacking cell surface hyaluronidase PH-20 can pass through the layer of cumulus cells and fertilize the egg

Daichi Baba; Shin-ichi Kashiwabara; Arata Honda; Kazuo Yamagata; Qing Wu; Masahito Ikawa; Masaru Okabe; Tadashi Baba

The function of glycosylphosphatidylinositol-anchored sperm hyaluronidase PH-20 in fertilization has long been believed to enable acrosome-intact sperm to pass through the layer of cumulus cells and reach the egg zona pellucida. In this study, we have produced mice carrying a null mutation in the PH-20 gene using homologous recombination. Despite the absence of sperm PH-20, the mutant male mice were still fertile. In vitro fertilization assays showed that mouse sperm lacking PH-20 possess a reduced ability to disperse cumulus cells from the cumulus mass, resulting in delayed fertilization solely at the early stages after insemination. Moreover, SDS-PAGE of sperm extracts and subsequent Western blot analysis revealed the presence of other hyaluronidase(s), except PH-20, presumably within the acrosome of mouse sperm. These data provide evidence that PH-20 is not essential for fertilization, at least in the mouse, suggesting that the other hyaluronidase(s) may play an important role in sperm penetration through the cumulus cell layer and/or the egg zona pellucida, possibly in cooperation with PH-20, although the importance of sperm motility cannot be neglected.


Journal of Biological Chemistry | 2010

Generation of Induced Pluripotent Stem Cells in Rabbits: POTENTIAL EXPERIMENTAL MODELS FOR HUMAN REGENERATIVE MEDICINE*

Arata Honda; Michiko Hirose; Masanori Hatori; Shogo Matoba; Hiroyuki Miyoshi; Kimiko Inoue; Atsuo Ogura

Human induced pluripotent stem (iPS) cells have the potential to establish a new field of promising regenerative medicine. Therefore, the safety and the efficiency of iPS-derived cells must be tested rigorously using appropriate animal models before human trials can commence. Here, we report the establishment of rabbit iPS cells as the first human-type iPS cells generated from a small laboratory animal species. Using lentiviral vectors, four human reprogramming genes (c-MYC, KLF4, SOX2, and OCT3/4) were introduced successfully into adult rabbit liver and stomach cells. The resulting rabbit iPS cells closely resembled human iPS cells; they formed flattened colonies with sharp edges and proliferated indefinitely in the presence of basic FGF. They expressed the endogenous pluripotency markers c-MYC, KLF4, SOX2, OCT3/4, and NANOG, whereas the introduced human genes were completely silenced. Using in vitro differentiating conditions, rabbit iPS cells readily differentiated into ectoderm, mesoderm, and endoderm. They also formed teratomas containing a variety of tissues of all three germ layers in immunodeficient mice. Thus, the rabbit iPS cells fulfilled all of the requirements for the acquisition of the fully reprogrammed state, showing high similarity to their embryonic stem cell counterparts we generated recently. However, their global gene expression analysis revealed a slight but rigid difference between these two types of rabbit pluripotent stem cells. The rabbit model should enable us to compare iPS cells and embryonic stem cells under the same standardized conditions in evaluating their ultimate feasibility for pluripotent cell-based regenerative medicine in humans.


Journal of Biological Chemistry | 2002

A Mouse Serine Protease TESP5 Is Selectively Included into Lipid Rafts of Sperm Membrane Presumably as a Glycosylphosphatidylinositol-anchored Protein

Arata Honda; Kazuo Yamagata; Shin Sugiura; Katsuto Watanabe; Tadashi Baba

We have previously indicated that at least in mouse, sperm serine protease(s) other than acrosin probably act on the limited proteolysis of egg zona pellucida to create a penetration pathway for motile sperm, although the participation of acrosin cannot be ruled out completely. A 42-kDa gelatin-hydrolyzing serine protease present in mouse sperm is a candidate enzyme involved in the sperm penetration of the zona pellucida. In this study, we have PCR-amplified an EST clone encoding a testicular serine protease, termed TESP5, and then screened a mouse genomic DNA library using the DNA fragment as a probe. The DNA sequence of the isolated genomic clones indicated that the TESP5 gene is identical to the genes coding for testicular testisin and eosinophilic esp-1. Immunochemical analysis using affinity-purified anti-TESP5 antibody revealed that 42- and 41-kDa forms of TESP5 with the isoelectric points of 5.0 to 5.5 are localized in the head, cytoplasmic droplet, and midpiece of cauda epididymal sperm probably as a membranous protein. Moreover, these two forms of TESP5 were selectively included into Triton X-100-insoluble microdomains, lipid rafts, of the sperm membranes. These results show the identity between TESP5/testisin/esp-1 and the 42-kDa sperm serine protease. When HEK293 cells were transformed by an expression plasmid carrying the entire protein-coding region of TESP5, the recombinant protein produced was released from the cell membrane by treatment with Bacillus cereusphosphatidylinositol-specific phospholipase C, indicating that TESP5 is glycosylphosphatidylinositol-anchored on the cell surface. Enzymatic properties of recombinant TESP5 was similar to but distinguished from those of rat acrosin and pancreatic trypsin by the substrate specificity and inhibitory effects of serine protease inhibitors.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Isolation, characterization, and in vitro and in vivo differentiation of putative thecal stem cells

Arata Honda; Michiko Hirose; Kenshiro Hara; Shogo Matoba; Kimiko Inoue; Himomi Miki; Hitoshi Hiura; Mito Kanatsu-Shinohara; Yoshiakira Kanai; Tomohiro Kono; Takashi Shinohara; Atsuo Ogura

Although ovarian theca cells play an indispensable role in folliculogenesis by providing follicular structural integrity and steroid substrates for estrogen production, little information is available about their recruitment, growth, and differentiation because their immature forms have not been identified. We have isolated putative thecal stem cells with the ability to self-renew and differentiate in vivo and in vitro. They are similar to fibroblasts in morphology and proliferate in vitro as round colonies with a homogenous cell population. They were induced to differentiate into early precursors and steroidogenic cells in a stepwise manner after treatment with serum, luteinizing hormone, and paracrine factors from granulosa cells. At each differentiation step, these cells displayed appropriate gene expression and morphological markers and later secreted androstenedione. The fully mature morphology was achieved by coculture with isolated granulosa cells. When transplanted into the ovaries, the putative thecal stem cells colonized exclusively in the ovarian interstitium and the thecal layer of follicles as differentiated cells. Thus, thecal stem cells appear to be present in neonatal ovaries and can be isolated, purified, and induced to differentiate in vitro. Thecal stem cells could provide an invaluable in vitro experimental system to study interactions among the oocytes, granulosa cells, and theca cells during normal folliculogenesis and to study ovarian pathology caused by theca cell dysfunction.


Experimental Cell Research | 2009

Basic FGF and Activin/Nodal but not LIF signaling sustain undifferentiated status of rabbit embryonic stem cells.

Arata Honda; Michiko Hirose; Atsuo Ogura

Recently, we proposed that rabbit embryonic stem (ES) cells can be stable mammalian ES cells and can be a small animal model for human ES cell research. However, the signaling pathways controlling rabbit ES cell pluripotency remain largely unknown. Here we report that bFGF can maintain the undifferentiated status of rabbit ES cells and found that Activin/Nodal signaling through Smad2/3 activation is necessary to maintain the pluripotent status of rabbit ES cells. We further show that in spite of STAT3 in rabbit ES cells, LIF is dispensable for maintenance of undifferentiated status in rabbit ES cells. Although phosphorylation of Janus Kinase signal transducer and activator (JAK/STAT) disappeared after JAK-inhibitor treatment, OCT4 is constantly produced. When rabbit ES cells were cultured for more than 40 passages in the absence of LIF, expression of stem cell markers and teratoma formation were observed. Additionally, treatment with Rho-associated kinase (ROCK) inhibitor, Y27632, to rabbit ES cells significantly enhanced cell growth. These findings suggest that molecular mechanisms underlying rabbit ES cell self-renewal and pluripotency are similar to primate ES cells. Rabbit ES cells may provide a translational research model for the study of human diseases in vitro and applications to transplantation therapy.


The International Journal of Developmental Biology | 2008

Sperm penetration through cumulus mass and zona pellucida

Ekyune Kim; Misuzu Yamashita; Masanori Kimura; Arata Honda; Shin-ichi Kashiwabara; Tadashi Baba

Mammalian fertilization requires sperm to penetrate the cumulus mass and egg zona pellucida prior to fusion with the egg. Although sperm penetration through these physical barriers is essential, the molecular mechanism has not yet been completely elucidated. In addition to sperm motility, hyaluronan-hydrolyzing and proteolytic enzymes of sperm have been suggested to participate in the penetration events. Here we focus on the functional roles of hyaluronidase and protease in sperm passage through the cumulus mass and zona pellucida.


Reproductive Biomedicine Online | 2008

Stable embryonic stem cell lines in rabbits: potential small animal models for human research

Arata Honda; Michiko Hirose; Kimiko Inoue; Narumi Ogonuki; Hiromi Miki; Nobuhiro Shimozawa; Masanori Hatori; Natsumi Shimizu; Takehide Murata; Megumi Hirose; Kazufumi Katayama; Noriko Wakisaka; Hiroyuki Miyoshi; Kazunari K. Yokoyama; Tadashi Sankai; Atsuo Ogura

Although embryonic stem (ES) cell lines derived from mice and primates are used extensively, the development of such lines from other mammals is extremely difficult because of their rapid decline in proliferation potential and pluripotency after several passages. This study describes the establishment of rabbit ES cell lines with indefinite proliferation potential. It was found that the feeder cell density determines the fate of rabbit ES cells, and that maximum proliferation potential was obtained when they were cultured on a feeder cell density of one-sixth of the density at confluency. Higher and lower densities of feeder cells induced ES cell differentiation or division arrest. Under optimized conditions, rabbit ES cells were passaged 50 times, after which they still possessed high telomerase activity. This culture system enabled efficient gene transduction and clonal expansion from single cells. During culture, rabbit ES cells exhibited flattened monolayer cell colonies, as reported for monkey and human ES cells, and expressed pluripotency markers. Embryoid bodies and teratomas formed readily in vitro and in vivo respectively. These ES cell lines can be safely cryopreserved for later use. Thus, rabbit ES cells can be added to the list of stable mammalian ES cells, enabling the rabbit to be used as a small animal model for the study of human cell transplantation therapy.


Experimental Animals | 2015

Single-step generation of rabbits carrying a targeted allele of the tyrosinase gene using CRISPR/Cas9

Arata Honda; Michiko Hirose; Tadashi Sankai; Lubna Yasmin; Kazuaki Yuzawa; Kimiko Honsho; Haruna Izu; Atsushi Iguchi; Masahito Ikawa; Atsuo Ogura

Targeted genome editing of nonrodent mammalian species has provided the potential for highly accurate interventions into gene function in humans and the generation of useful animal models of human diseases. Here we show successful clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated (Cas)-mediated gene targeting via circular plasmid injection in rabbits. The rabbit tyrosinase gene (TYR) was effectively disrupted, and we confirmed germline transmission by pronuclear injection of a circular plasmid expressing humanized Cas9 (hCas9) and single-guide RNA. Direct injection into pronuclear stage zygotes was possible following an in vitro validation assay. Neither off-target mutagenesis nor hCas9 transgenesis was detected in any of the genetically targeted pups and embryos examined. Gene targeting with this rapid and simplified strategy will help accelerate the development of translational research using other nonrodent mammalian species.


Genes to Cells | 2008

Reduced fertility of mouse epididymal sperm lacking Prss21/Tesp5 is rescued by sperm exposure to uterine microenvironment.

Misuzu Yamashita; Arata Honda; Atsuo Ogura; Shin-ichi Kashiwabara; Kiyoko Fukami; Tadashi Baba

Although the acrosome reaction and subsequent penetration of sperm through the egg zona pellucida (ZP) are essential for mammalian fertilization, the molecular mechanism is still controversial. We have previously identified serine protease Tesp5 identical to Prss21 on the mouse sperm surface as a candidate enzyme involved in sperm penetration through the ZP. Here we show that despite normal fertility of male mice lacking Prss21/Tesp5, the epididymal sperm penetrates the ZP only at a very low rate in vitro, presumably owing to the reduced ability to bind the ZP and undergo the ZP‐induced acrosome reaction. The ability of Prss21‐null sperm to fuse with the egg in vitro was also impaired severely. Intriguingly, the reduced fertility of Prss21‐null epididymal sperm was rescued by exposure of the sperm to the uterine microenvironment and by in vitro treatment of the sperm with uterine fluids. These data suggest the physiological importance of sperm transport through the uterus.


Journal of Biological Chemistry | 2013

Naive-like conversion overcomes the limited differentiation capacity of induced pluripotent stem cells

Arata Honda; Masanori Hatori; Michiko Hirose; Chizumi Honda; Haruna Izu; Kimiko Inoue; Ryutaro Hirasawa; Shogo Matoba; Sumie Togayachi; Hiroyuki Miyoshi; Atsuo Ogura

Background: The quality of induced pluripotent stem (iPS) cells might be inherently worse than embryonic stem cells. Results: Although the differentiation capacity of iPS cells is limited, it can be enhanced. Conclusion: Improving their level of pluripotency alleviated the limited capacity of iPS cells. Significance: This report offers an effective strategy for the development of iPS cell-based research. Although induced pluripotent stem (iPS) cells are indistinguishable from ES cells in their expression of pluripotent markers, their differentiation into targeted cells is often limited. Here, we examined whether the limited capacity of iPS cells to differentiate into neural lineage cells could be mitigated by improving their base-line level of pluripotency, i.e. by converting them into the so-called “naive” state. In this study, we used rabbit iPS and ES cells because of the easy availability of both cell types and their typical primed state characters. Repeated passages of the iPS cells permitted their differentiation into early neural cell types (neural stem cells, neurons, and glial astrocytes) with efficiencies similar to ES cells. However, unlike ES cells, their ability to differentiate later into neural cells (oligodendrocytes) was severely compromised. In contrast, after these iPS cells had been converted to a naive-like state, they readily differentiated into mature oligodendrocytes developing characteristic ramified branches, which could not be attained even with ES cells. These results suggest that the naive-like conversion of iPS cells might endow them with a higher differentiation capacity.

Collaboration


Dive into the Arata Honda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kimiko Inoue

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Haruna Izu

University of Miyazaki

View shared research outputs
Top Co-Authors

Avatar

Kimiko Inoue

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Narumi Ogonuki

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge