Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arcady Mushegian is active.

Publication


Featured researches published by Arcady Mushegian.


Science | 2006

A Complex Oscillating Network of Signaling Genes Underlies the Mouse Segmentation Clock

Mary Lee Dequéant; Earl Glynn; Karin Gaudenz; Matthias B. Wahl; Jie Chen; Arcady Mushegian; Olivier Pourquié

The segmental pattern of the spine is established early in development, when the vertebral precursors, the somites, are rhythmically produced from the presomitic mesoderm. Microarray studies of the mouse presomitic mesoderm transcriptome reveal that the oscillator associated with this process, the segmentation clock, drives the periodic expression of a large network of cyclic genes involved in cell signaling. Mutually exclusive activation of the notch–fibroblast growth factor and Wnt pathways during each cycle suggests that coordinated regulation of these three pathways underlies the clock oscillator.


Molecular Microbiology | 1997

Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea.

Eugene V. Koonin; Arcady Mushegian; Michael Y. Galperin; D. Roland Walker

Protein sequences encoded in three complete bacterial genomes, those of Haemophilus influenzae, Mycoplasma genitalium and Synechocystis sp., and the first available archaeal genome sequence, that of Methanococcus jannaschii, were analysed using the blast2 algorithm and methods for amino acid motif detection. Between 75% and 90% of the predicted proteins encoded in each of the bacterial genomes and 73% of the M. jannaschii proteins showed significant sequence similarity to proteins from other species. The fraction of bacterial and archaeal proteins containing regions conserved over long phylogenetic distances is nearly the same and close to 70%. Functions of 70–85% of the bacterial proteins and about 70% of the archaeal proteins were predicted with varying precision. This contrasts with the previous report that more than half of the archaeal proteins have no homologues and shows that, with more sensitive methods and detailed analysis of conserved motifs, archaeal genomes become as amenable to meaningful interpretation by computer as bacterial genomes. The analysis of conserved motifs resulted in the prediction of a number of previously undetected functions of bacterial and archaeal proteins and in the identification of novel protein families. In spite of the generally high conservation of protein sequences, orthologues of 25% or less of the M. jannaschii genes were detected in each individual completely sequenced genome, supporting the uniqueness of archaea as a distinct domain of life. About 53% of the M. jannaschii proteins belong to families of paralogues, a fraction similar to that in bacteria with larger genomes, such as Synechocystis sp. and Escherichia coli, but higher than that in H. influenzae, which has approximately the same number of genes as M. jannaschii. Certain groups of proteins, e.g. molecular chaperones and DNA repair enzymes, thought to be ubiquitous and represented in the minimal gene set derived by bacterial genome comparison, are missing in M. jannaschii, indicating massive non‐orthologous displacement of genes responsible for essential functions. An unexpectedly large fraction of the M. jannaschii gene products, 44%, shows significantly higher similarity to bacterial than to eukaryotic proteins, compared with 13% that have eukaryotic proteins as their closest homologues (the rest of the proteins show approximately the same level of similarity to bacterial and eukaryotic homologues or have no homologues). Proteins involved in translation, transcription, replication and protein secretion are most closely related to eukaryotic proteins, whereas metabolic enzymes, metabolite uptake systems, enzymes for cell wall biosynthesis and many uncharacterized proteins appear to be ‘bacterial’. A similar prevalence of proteins of apparent bacterial origin was observed among the currently available sequences from the distantly related archaeal genus, Sulfolobus. It is likely that the evolution of archaea included at least one major merger between ancestral cells from the bacterial lineage and the lineage leading to the eukaryotic nucleocytoplasm.


Current Biology | 1996

Metabolism and evolution of Haemophilus influenzae deduced from a whole-genome comparison with Escherichia coli

Roman L. Tatusov; Arcady Mushegian; Peer Bork; Nigel P. Brown; William S. Hayes; Mark Borodovsky; Kenneth E. Rudd; Eugene V. Koonin

BACKGROUND The 1.83 Megabase (Mb) sequence of the Haemophilus influenzae chromosome, the first completed genome sequence of a cellular life form, has been recently reported. Approximately 75 % of the 4.7 Mb genome sequence of Escherichia coli is also available. The life styles of the two bacteria are very different - H. influenzae is an obligate parasite that lives in human upper respiratory mucosa and can be cultivated only on rich media, whereas E. coli is a saprophyte that can grow on minimal media. A detailed comparison of the protein products encoded by these two genomes is expected to provide valuable insights into bacterial cell physiology and genome evolution. RESULTS We describe the results of computer analysis of the amino-acid sequences of 1703 putative proteins encoded by the complete genome of H. influenzae. We detected sequence similarity to proteins in current databases for 92 % of the H. influenzae protein sequences, and at least a general functional prediction was possible for 83 %. A comparison of the H. influenzae protein sequences with those of 3010 proteins encoded by the sequenced 75 % of the E. coli genome revealed 1128 pairs of apparent orthologs, with an average of 59 % identity. In contrast to the high similarity between orthologs, the genome organization and the functional repertoire of genes in the two bacteria were remarkably different. The smaller genome size of H. influenzae is explained, to a large extent, by a reduction in the number of paralogous genes. There was no long range colinearity between the E. coli and H. influenzae gene orders, but over 70 % of the orthologous genes were found in short conserved strings, only about half of which were operons in E. coli. Superposition of the H. influenzae enzyme repertoire upon the known E. coli metabolic pathways allowed us to reconstruct similar and alternative pathways in H. influenzae and provides an explanation for the known nutritional requirements. CONCLUSIONS By comparing proteins encoded by the two bacterial genomes, we have shown that extensive gene shuffling and variation in the extent of gene paralogy are major trends in bacterial evolution; this comparison has also allowed us to deduce crucial aspects of the largely uncharacterized metabolism of H. influenzae.


Pharmacology & Therapeutics | 2012

G protein-coupled receptor kinases: More than just kinases and not only for GPCRs

Eugenia V. Gurevich; John J. G. Tesmer; Arcady Mushegian; Vsevolod V. Gurevich

G protein-coupled receptor (GPCR) kinases (GRKs) are best known for their role in homologous desensitization of GPCRs. GRKs phosphorylate activated receptors and promote high affinity binding of arrestins, which precludes G protein coupling. GRKs have a multidomain structure, with the kinase domain inserted into a loop of a regulator of G protein signaling homology domain. Unlike many other kinases, GRKs do not need to be phosphorylated in their activation loop to achieve an activated state. Instead, they are directly activated by docking with active GPCRs. In this manner they are able to selectively phosphorylate Ser/Thr residues on only the activated form of the receptor, unlike related kinases such as protein kinase A. GRKs also phosphorylate a variety of non-GPCR substrates and regulate several signaling pathways via direct interactions with other proteins in a phosphorylation-independent manner. Multiple GRK subtypes are present in virtually every animal cell, with the highest expression levels found in neurons, with their extensive and complex signal regulation. Insufficient or excessive GRK activity was implicated in a variety of human disorders, ranging from heart failure to depression to Parkinsons disease. As key regulators of GPCR-dependent and -independent signaling pathways, GRKs are emerging drug targets and promising molecular tools for therapy. Targeted modulation of expression and/or of activity of several GRK isoforms for therapeutic purposes was recently validated in cardiac disorders and Parkinsons disease.


Trends in Microbiology | 2010

New dimensions of the virus world discovered through metagenomics

David M. Kristensen; Arcady Mushegian; Valerian V. Dolja; Eugene V. Koonin

Metagenomic analysis of viruses suggests novel patterns of evolution, changes the existing ideas of the composition of the virus world and reveals novel groups of viruses and virus-like agents. The gene composition of the marine DNA virome is dramatically different from that of known bacteriophages. The virome is dominated by rare genes, many of which might be contained within virus-like entities such as gene transfer agents. Analysis of marine metagenomes thought to consist mostly of bacterial genes revealed a variety of sequences homologous to conserved genes of eukaryotic nucleocytoplasmic large DNA viruses, resulting in the discovery of diverse members of previously undersampled groups and suggesting the existence of new classes of virus-like agents. Unexpectedly, metagenomics of marine RNA viruses showed that representatives of only one superfamily of eukaryotic viruses, the picorna-like viruses, dominate the RNA virome.


Journal of Biological Chemistry | 2005

A Mammalian Chromatin Remodeling Complex with Similarities to the Yeast INO80 Complex

Jingji Jin; Yong Cai; Tingting Yao; Aaron J. Gottschalk; Laurence Florens; Selene K. Swanson; José L. Gutiérrez; Michael K. Coleman; Jerry L. Workman; Arcady Mushegian; Michael P. Washburn; Ronald C. Conaway; Joan Weliky Conaway

The mammalian Tip49a and Tip49b proteins belong to an evolutionarily conserved family of AAA+ ATPases. In Saccharomyces cerevisiae, orthologs of Tip49a and Tip49b, called Rvb1 and Rvb2, respectively, are subunits of two distinct ATP-dependent chromatin remodeling complexes, SWR1 and INO80. We recently demonstrated that the mammalian Tip49a and Tip49b proteins are integral subunits of a chromatin remodeling complex bearing striking similarities to the S. cerevisiae SWR1 complex (Cai, Y., Jin, J., Florens, L., Swanson, S. K., Kusch, T., Li, B., Workman, J. L., Washburn, M. P., Conaway, R. C., and Conaway, J. W. (2005) J. Biol. Chem. 280, 13665–13670). In this report, we identify a new mammalian Tip49a- and Tip49b-containing ATP-dependent chromatin remodeling complex, which includes orthologs of 8 of the 15 subunits of the S. cerevisiae INO80 chromatin remodeling complex as well as at least five additional subunits unique to the human INO80 (hINO80) complex. Finally, we demonstrate that, similar to the yeast INO80 complex, the hINO80 complex exhibits DNA- and nucleosome-activated ATPase activity and catalyzes ATP-dependent nucleosome sliding.


Protein Science | 2003

Three monophyletic superfamilies account for the majority of the known glycosyltransferases

Jing Liu; Arcady Mushegian

Sixty‐five families of glycosyltransferases (EC 2.4.x.y) have been recognized on the basis of high‐sequence similarity to a founding member with experimentally demonstrated enzymatic activity. Although distant sequence relationships between some of these families have been reported, the natural history of glycosyltransferases is poorly understood. We used iterative searches of sequence databases, motif extraction, structural comparison, and analysis of completely sequenced genomes to track the origins of modern‐type glycosyltransferases. We show that >75% of recognized glycosyltransferase families belong to one of only three monophyletic superfamilies of proteins, namely, (1) a recently described GPGTF/GT‐B superfamily; (2) a nucleoside‐diphosphosugar transferase (GT‐A) superfamily, which is characterized by a DxD sequence signature and also includes nucleotidyltransferases; and (3) a GT‐C superfamily of integral membrane glycosyltransferases with a modified DxD signature in the first extracellular loop. Several developmental regulators in Metazoans, including Fringe and Egghead homologs, belong to the second superfamily. Interestingly, Tout‐velu/Exostosin family of developmental proteins found in all multicellular eukaryotes, contains separate domains belonging to the first and the second superfamilies, explaining multiple glycosyltransferase activities in one protein.


Journal of General Virology | 1991

Diverse groups of plant RNA and DNA viruses share related movement proteins that may possess chaperone-like activity

Eugene V. Koonin; Arcady Mushegian; Eugene V. Ryabov; Valerian V. Dolja

Amino acid sequences of plant virus proteins mediating cell-to-cell movement were compared to each other and to protein sequences in databases. Two families of movement proteins have been identified, the members of which show statistically significant sequence similarity. The first, larger family (I) encompasses the movement proteins of tobamo-, tobra-, caulimo- and comoviruses, apple chlorotic leaf spot virus (ACLSV) and geminiviruses with bipartite genomes. Thus this family includes viruses which move by two methods, those requiring the coat protein for the cell-to-cell spread (comoviruses) and those not having this requirement (tobamoviruses). The previously unsuspected relationship between the movement proteins of RNA and DNA viruses having no RNA stage in their life cycle (geminiviruses) suggested that their movement mechanisms might be similar. The second, smaller family (II) consists of the movement proteins of tricornaviruses (bromoviruses, cucumoviruses, alfalfa mosaic virus and tobacco streak virus) and dianthoviruses. Alignment of the sequences of family I movement proteins highlighted two motifs, centred at conserved Gly and Asp residues, respectively, which are assumed to be crucial for the movement protein function(s). Screening the amino acid sequence database revealed another conserved motif that is shared by a large subset of family I movement proteins (those of caulimo- and comoviruses, and ACLSV) and the family of cellular 90K heat shock proteins (HSP90). Based on the analogy to HSP90, it is speculated that many plant virus movement proteins may mediate virus transport in a chaperone-like manner.


BMC Structural Biology | 2005

Natural history of S-adenosylmethionine-binding proteins.

Piotr Z Kozbial; Arcady Mushegian

BackgroundS-adenosylmethionine is a source of diverse chemical groups used in biosynthesis and modification of virtually every class of biomolecules. The most notable reaction requiring S-adenosylmethionine, transfer of methyl group, is performed by a large class of enzymes, S-adenosylmethionine-dependent methyltransferases, which have been the focus of considerable structure-function studies. Evolutionary trajectories of these enzymes, and especially of other classes of S-adenosylmethionine-binding proteins, nevertheless, remain poorly understood. We addressed this issue by computational comparison of sequences and structures of various S-adenosylmethionine-binding proteins.ResultsTwo widespread folds, Rossmann fold and TIM barrel, have been repeatedly used in evolution for diverse types of S-adenosylmethionine conversion. There were also cases of recruitment of other relatively common folds for S-adenosylmethionine binding. Several classes of proteins have unique unrelated folds, specialized for just one type of chemistry and unified by the theme of internal domain duplications. In several cases, functional divergence is evident, when evolutionarily related enzymes have changed the mode of binding and the type of chemical transformation of S-adenosylmethionine. There are also instances of functional convergence, when biochemically similar processes are performed by drastically different classes of S-adenosylmethionine-binding proteins.Comparison of remote sequence similarities and analysis of phyletic patterns suggests that the last universal common ancestor of cellular life had between 10 and 20 S-adenosylmethionine-binding proteins from at least 5 fold classes, providing for S-adenosylmethionine formation, polyamine biosynthesis, and methylation of several substrates, including nucleic acids and peptide chain release factor.ConclusionWe have observed several novel relationships between families that were not known to be related before, and defined 15 large superfamilies of SAM-binding proteins, at least 5 of which may have been represented in the last common ancestor.


Bioinformatics | 2006

Detecting periodic patterns in unevenly spaced gene expression time series using Lomb--Scargle periodograms

Earl Glynn; Jie Chen; Arcady Mushegian

MOTIVATION Periodic patterns in time series resulting from biological experiments are of great interest. The commonly used Fast Fourier Transform (FFT) algorithm is applicable only when data are evenly spaced and when no values are missing, which is not always the case in high-throughput measurements. The choice of statistic to evaluate the significance of the periodic patterns for unevenly spaced gene expression time series has not been well substantiated. METHODS The Lomb-Scargle periodogram approach is used to search time series of gene expression to quantify the periodic behavior of every gene represented on the DNA array. The Lomb-Scargle periodogram analysis provides a direct method to treat missing values and unevenly spaced time points. We propose the combination of a Lomb-Scargle test statistic for periodicity and a multiple hypothesis testing procedure with controlled false discovery rate to detect significant periodic gene expression patterns. RESULTS We analyzed the Plasmodium falciparum gene expression dataset. In the Quality Control Dataset of 5080 expression patterns, we found 4112 periodic probes. In addition, we identified 243 probes with periodic expression in the Complete Dataset, which could not be examined in the original study by the FFT analysis due to an excessive number of missing values. While most periodic genes had a period of 48 h, some had a period close to 24 h. Our approach should be applicable for detection and quantification of periodic patterns in any unevenly spaced gene expression time-series data.

Collaboration


Dive into the Arcady Mushegian's collaboration.

Top Co-Authors

Avatar

Eugene V. Koonin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Laurence Florens

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Michael P. Washburn

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Galina V. Glazko

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

David M. Kristensen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Konstantin Severinov

Skolkovo Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Peer Bork

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar

Jerry L. Workman

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jing Liu

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Manisha Goel

Stowers Institute for Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge