Argenis Bilbao
Texas Tech University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Argenis Bilbao.
IEEE Transactions on Power Electronics | 2016
James A. Schrock; Bejoy N. Pushpakaran; Argenis Bilbao; William B. Ray; Emily Hirsch; Mitchell D. Kelley; Shad L. Holt; Stephen B. Bayne
SiC MOSFETs are a leading option for increasing the power density of power electronics; however, for these devices to supersede the Si insulated-gate bipolar transistor, their characteristics have to be further understood. Two SiC vertically oriented planar gate D-MOSFETs rated for 1200 V/150 A were repetitively subjected to pulsed overcurrent conditions to evaluate their failure mode due to this common source of electrical stress. This research supplements recent work that demonstrated the long term reliability of these same devices [1]. Using an RLC pulse-ring-down test bed, these devices hard-switched 600 A peak current pulses, corresponding to a current density of 1500 A/cm2. Throughout testing, static characteristics of the devices such as BVDSS, RDS (on), and VGS(th) were measured with a high power device analyzer. The experimental results indicated that a conductive path was formed through the gate oxide; TCAD simulations revealed localized heating at the SiC/SiO2 interface as a result of the extreme high current density present in the devices JFET region. However, the high peak currents and repetition rates required to produce the conductive path through the gate oxide demonstrate the robustness of SiC MOSFETs under the pulsed overcurrent conditions common in power electronic applications.
IEEE Transactions on Power Electronics | 2015
James A. Schrock; William B. Ray; Kevin Lawson; Argenis Bilbao; Stephen B. Bayne; Shad L. Holt; Lin Cheng; John W. Palmour; Charles Scozzie
For SiC DMOSFETs to obtain widespread usage in power electronics their long-term operational ability to handle the stressful transient current and high temperatures common in power electronics needs to be further verified. To determine the long-term reliability of a single 4H-SiC DMOSFET, the effects of extreme high current density were evaluated. The 4H-SiC DMOSFET has an active conducting area of 40 mm2, and is rated for 1200 V and 150 A. The device was electrically stressed by hards-witching transient currents in excess of four times the given rating (>600 A) corresponding to a current density of 1500 A/cm2. Periodically throughout testing, several device characteristics including RDS(on) and VG S(th) were measured. After 500 000 switching cycles, the device showed a 6.77% decrease in RDS (on), and only a 132-mV decreased in VG S(th). Additionally, the dc characteristics of the device were analyzed from 25 to 150 °C and revealed a 200-mV increase in on-state voltage drop at 20 A and a 2-V reduction in VG S(th) at 150 °C. These results show this SiC DMOSFET has robust long-term reliability in high-power applications that are susceptible to pulse over currents, such as pulsed power modulators and hard-switched power electronics.
international symposium on power semiconductor devices and ic's | 2013
Lin Cheng; Anant K. Agarwal; Marcelo Schupbach; Donald A. Gajewski; Daniel J. Lichtenwalner; Vipindas Pala; Sei-Hyung Ryu; Jim Richmond; John W. Palmour; William B. Ray; James A. Schrock; Argenis Bilbao; Stephen B. Bayne; Aivars J. Lelis; Charles Scozzie
In this paper, we report our recently developed 2<sup>nd</sup> Generation, large-area (56 mm<sup>2</sup> with an active conducting area of 40 mm<sup>2</sup>) 4H-SiC DMOSFET, which can reliably block 1600 V with very low leakage current under a gate-bias (V<sub>G</sub>) of 0 V at temperatures up to 200°C. The device also exhibits a low on-resistance (R<sub>ON</sub>) of 12.4 mΩ at 150 A and V<sub>G</sub> of 20 V. DC and dynamic switching characteristics of the SiC DMOSFET have also been compared with a commercially available 1200 V/ 200 A rated Si trench gate IGBT. The switching energy of the SiC DMOSFET at 600 V input voltage bus is > 4X lower than that of the Si IGBT at room-temperature and > 7X lower at 150°C. A comprehensive study on intrinsic reliability of this 2<sup>nd</sup> generation SiC MOSFET has been performed to build consumer confidence and to achieve broad market adoption of this disruptive power switch technology.
Proceedings of SPIE | 2011
Argenis Bilbao; Davis P. Hoover; Jennifer A. Rice; Jamie Chapman
Researchers have made significant progress in recent years towards realizing long-term structural health monitoring (SHM) utilizing wireless smart sensor networks (WSSNs). These efforts have focused on improving the performance and robustness of such networks to achieve high quality data acquisition and in-network processing. One of the primary challenges still facing the use of smart sensors for long-term monitoring deployments is their limited power resources. Periodically accessing the sensor nodes to change batteries is not feasible or economical in many deployment cases. While energy harvesting techniques show promise for prolonging unattended network life, low-power design and operation are still critically important. This research presents a new, fully integrated ultra-low power wireless smart sensor node and a flexible base station, both designed for long-term SHM applications. The power consumption of the sensor nodes and base station has been minimized through careful hardware selection and the implementation of power-aware network software, without sacrificing flexibility and functionality.
ieee international pulsed power conference | 2015
William B. Ray; James A. Schrock; Argenis Bilbao; Mitchell D. Kelley; Shelby Lacouture; Emily Hirsch; Stephen B. Bayne
The advancement of wide bandgap semiconductor materials has led to the development of Gallium Nitride (GaN) power semiconductor devices, specifically GaN Power MOSFETs. GaN devices have improved characteristics in carrier mobility and on-state resistance compared to Silicon solid state switches. With the development of these new power semiconductor devices a need was established to understand the behavior of the devices switching performance under stress, with regards to situations in pulsing circuits. Through the examination of the switching characteristics of GaN devices, the results can be used for the improvement of advanced pulsing circuit design with GaN solid state switches. In this paper the authors develop a test bed to expose the GaN Power MOSFETs to single and repetitive pulsed overcurrents. The test bed was developed using a Pulse Ring Down board in a radially symmetric configuration to minimize the total equivalent inductance and resistance. The test bed switches the GaN MOSFET with low impedance between the DC bus and ground to induce the stress the MOSFET experiences during pulsed overcurrents. The DC characteristics were measured between switching sets to reveal characteristic signs of potential degradation and failure modes due to pulsed overcurrents. The single and repetitive pulse switching characteristics are captured, analyzed, and shown.
ieee international power modulator and high voltage conference | 2012
Argenis Bilbao; Stephen B. Bayne
The goal of this research is to develop device models for Silicon Carbide (SiC) MOSFETs. Parameters are extracted and used to create PSPICE models that can be utilized for circuit simulation. Two silicon carbide power MOSFETs made available by CREE Semiconductor are considered. The first silicon carbide power MOSFET tested is the CMF20120A64410. This MOSFET features a 1200V drain-to-source breakdown voltage and 30A continuous current capacity. The second device tested is an experimental MOSFET that is still not available in the market as of the date of this paper. The experimental MOSFET features a 1200V drain-to-source breakdown voltage and 80A continuous current capability. Custom made circuits are developed for extracting some of the parameters. In some cases where the tests only require low drain current, a HP B1505A curve tracer is used to aid the development of the model. The effect of temperature over the gate threshold voltage is also investigated. By externally increasing and monitoring the die temperature of the SiC MOSFETs, new device parameters can be extracted and modeled. Once the parameters are extracted they are converted into a PSPICE model. The model is tested and compared to the real device to verify accuracy. This is achieved using custom switching circuits with both inductive and resistive loads and software suites like MATLAB.
Review of Scientific Instruments | 2015
Argenis Bilbao; James A. Schrock; William B. Ray; Mitchell D. Kelley; Shad L. Holt; M. Giesselmann; Stephen B. Bayne
Obtaining accurate collector to emitter voltage measurements when characterizing high voltage silicon carbide (SiC) devices requires the ability to measure voltages in the range of zero to 10 V while the device is in the on-state and the ability to withstand ultra-high voltages while the device is in the off-state. This paper presents a specialized voltage probe capable of accurately measuring the aforementioned range. A comparison is made between the proposed probe and other commonly used high voltage probe alternatives in relation to high voltage SiC device testing. Testing of the probe was performed to ensure linearity, high accuracy, and high bandwidth.
IEEE Transactions on Dielectrics and Electrical Insulation | 2015
M. Giesselmann; Argenis Bilbao
This paper describes the implementation of a load voltage observer into the control algorithms of a Rapid Capacitor Charger controlled by a digital signal controller (DSC) with a fast DSP core. A hybrid peak current mode control algorithm with digital control of the PWM signal and high speed analog current sensing is used to control the inverter of the charger. The DSC controller keeps the current loop stable using adaptive slope compensation. In addition to providing fast adaptive digital control of the current loop, the DSC can perform additional functions such as estimation of the voltage level of the load capacitor. This avoids the cost, bandwidth limitations and insulation challenges of a conventional HV-sensor. To evaluate the performance of the load voltage observer, we measured the output voltage with a laboratory grade HV probe to establish a reference to test the results of the digital algorithm.
international conference on plasma science | 2013
Argenis Bilbao; William B. Ray; James A. Schrock; Kevin Lawson; Stephen B. Bayne; Lin Cheng; Anant K. Agarwal; Charles Scozzie
The purpose of this research is to characterize and compare CREEs new N-Channel Silicon Carbide (4H-SiC) vertical power D-MOSFET with CREEs previous generation of N-Channel Silicon Carbide (4H-SiC) vertical power D-MOSFET. Changes made to the newest MOSFET design lead to a 400% increase in pulsed current handling capability over the previous generation device with the same active area.
ieee international pulsed power conference | 2015
Argenis Bilbao; James A. Schrock; William B. Ray; Mitchell D. Kelley; Stephen B. Bayne
The power density of pulsed power systems can be increased with the utilization of silicon carbide power devices1. With the latest developments in manufacturing techniques, the fabrication of insulated gate bipolar transistor (IGBT) devices with blocking voltages as high as 20 kV are now possible2. A complete practical understanding of ultra-high voltage silicon carbide device switching parameters is not yet known. The purpose of this research is to show switching parameters extracted from inductive and resistive switching tests performed on state of the art 20 kV silicon carbide IGBTs. Resistive switching tests were used to extract device rise time, fall time, turn-on delay, turn-off delay and conduction losses. Double pulsed inductive switching tests were used to extract turn-on and turn-off switching energies and peak power dissipation. The data was obtained at case temperatures from 25 C to 150 C.