Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ari B. Molofsky is active.

Publication


Featured researches published by Ari B. Molofsky.


Science | 2011

Eosinophils Sustain Adipose Alternatively Activated Macrophages Associated with Glucose Homeostasis

Davina Wu; Ari B. Molofsky; Hong-Erh Liang; Roberto R. Ricardo-Gonzalez; Hani Jouihan; Jennifer K. Bando; Ajay Chawla; Richard M. Locksley

Regulation of adipose tissue macrophages by eosinophils reveals an unexpected role for eosinophils in metabolic homeostasis. Eosinophils are associated with helminth immunity and allergy, often in conjunction with alternatively activated macrophages (AAMs). Adipose tissue AAMs are necessary to maintain glucose homeostasis and are induced by the cytokine interleukin-4 (IL-4). Here, we show that eosinophils are the major IL-4–expressing cells in white adipose tissues of mice, and, in their absence, AAMs are greatly attenuated. Eosinophils migrate into adipose tissue by an integrin-dependent process and reconstitute AAMs through an IL-4– or IL-13–dependent process. Mice fed a high-fat diet develop increased body fat, impaired glucose tolerance, and insulin resistance in the absence of eosinophils, and helminth-induced adipose tissue eosinophilia enhances glucose tolerance. Our results suggest that eosinophils play an unexpected role in metabolic homeostasis through maintenance of adipose AAMs.


Journal of Experimental Medicine | 2013

Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages

Ari B. Molofsky; Jesse C. Nussbaum; Hong-Erh Liang; Steven J. Van Dyken; Laurence E. Cheng; Alexander Mohapatra; Ajay Chawla; Richard M. Locksley

Innate lymphoid type 2 cells maintain eosinophils and alternatively activated macrophages in visceral fat via the production of IL-5 and IL-13.


Nature | 2013

Type 2 innate lymphoid cells control eosinophil homeostasis

Jesse C. Nussbaum; Steven J. Van Dyken; Jakob von Moltke; Laurence E. Cheng; Alexander Mohapatra; Ari B. Molofsky; Emily E. Thornton; Matthew F. Krummel; Ajay Chawla; Hong-Erh Liang; Richard M. Locksley

Eosinophils are specialized myeloid cells associated with allergy and helminth infections. Blood eosinophils demonstrate circadian cycling, as described over 80 years ago, and are abundant in the healthy gastrointestinal tract. Although a cytokine, interleukin (IL)-5, and chemokines such as eotaxins mediate eosinophil development and survival, and tissue recruitment, respectively, the processes underlying the basal regulation of these signals remain unknown. Here we show that serum IL-5 levels are maintained by long-lived type 2 innate lymphoid cells (ILC2) resident in peripheral tissues. ILC2 cells secrete IL-5 constitutively and are induced to co-express IL-13 during type 2 inflammation, resulting in localized eotaxin production and eosinophil accumulation. In the small intestine where eosinophils and eotaxin are constitutive, ILC2 cells co-express IL-5 and IL-13; this co-expression is enhanced after caloric intake. The circadian synchronizer vasoactive intestinal peptide also stimulates ILC2 cells through the VPAC2 receptor to release IL-5, linking eosinophil levels with metabolic cycling. Tissue ILC2 cells regulate basal eosinophilopoiesis and tissue eosinophil accumulation through constitutive and stimulated cytokine expression, and this dissociated regulation can be tuned by nutrient intake and central circadian rhythms.


Molecular Microbiology | 2004

Differentiate to thrive: lessons from the Legionella pneumophila life cycle

Ari B. Molofsky; Michele S. Swanson

When confronted by disparate environments, microbes routinely alter their physiology to tolerate or exploit local conditions. But some circumstances require more drastic remodelling of the bacterial cell, as sporulation by the Bacillus and Streptomyces species of soil bacteria vividly illustrates. Cellular differentiation is also crucial for pathogens, the challenge for which is to colonize one host, then be transmitted to the next. Using the Gram‐negative Legionella pneumophila as a model intracellular pathogen, we describe how biogenesis of the replication vacuole is determined by the developmental state of the bacterium. Subsequently, when replicating bacteria have exhausted the nutrient supply, the pathogens couple their conversion to stationary phase physiology with expression of traits that promote transmission to a new host. The cellular differentiation of L. pneumophila is co‐ordinated by a regulatory circuit that integrates several elements that are broadly conserved in the microbial world. The alarmone (p)ppGpp promotes transcription directed by the alternative sigma factors RpoS, FliA and, probably, RpoN, and also post‐transcriptional control mediated by a two‐component regulatory system, LetA/S (GacA/S), and an mRNA‐binding protein, CsrA (RsmA). By applying knowledge of microbial differentiation in combination with tools to screen the complete genomes of pathogens, experiments can be designed to identify two distinct classes of virulence traits: factors that promote replication and those dedicated to transmission.


Cell | 2015

Activated Type 2 Innate Lymphoid Cells Regulate Beige Fat Biogenesis

Min-Woo Lee; Justin I. Odegaard; Lata Mukundan; Yifu Qiu; Ari B. Molofsky; Jesse C. Nussbaum; Karen Yun; Richard M. Locksley; Ajay Chawla

Type 2 innate lymphoid cells (ILC2s), an innate source of the type 2 cytokines interleukin (IL)-5 and -13, participate in the maintenance of tissue homeostasis. Although type 2 immunity is critically important for mediating metabolic adaptations to environmental cold, the functions of ILC2s in beige or brown fat development are poorly defined. We report here that activation of ILC2s by IL-33 is sufficient to promote the growth of functional beige fat in thermoneutral mice. Mechanistically, ILC2 activation results in the proliferation of bipotential adipocyte precursors (APs) and their subsequent commitment to the beige fat lineage. Loss- and gain-of-function studies reveal that ILC2- and eosinophil-derived type 2 cytokines stimulate signaling via the IL-4Rα in PDGFRα(+) APs to promote beige fat biogenesis. Together, our results highlight a critical role for ILC2s and type 2 cytokines in the regulation of adipocyte precursor numbers and fate, and as a consequence, adipose tissue homeostasis. PAPERCLIP:


Molecular Microbiology | 2003

Legionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replication

Ari B. Molofsky; Michelle S. Swanson

Legionella pneumophila can replicate inside amoebae and also alveolar macrophages to cause Legionnaires’ Disease in susceptible hosts. When nutrients become limiting, a stringent‐like response coordinates the differentiation of L. pneumophila to a transmissive form, a process mediated by the two‐component system LetA/S and the sigma factors RpoS and FliA. Here we demonstrate that the broadly conserved RNA binding protein CsrA is a global repressor of L. pneumophila transmission phenotypes and an essential activator of intracellular replication. By analysing csrA expression and the phenotypes of csrA single and double mutants and a strain that expresses csrA constitutively, we demonstrate that, during replication in broth, CsrA represses every post‐exponential phase phenotype examined, including cell shape shortening, motility, pigmentation, stress resistance, sodium sensitivity, cytotoxicity and efficient macrophage infection. At the transition to the post‐exponential phase, LetA/S relieves CsrA repression to induce transmission phenotypes by both FliA‐dependent and ‐independent pathways. For L. pneumophila to avoid lysosomal degradation in macrophages, CsrA repression must be relieved by LetA/S before phagocytosis; conversely, before intracellular bacteria can replicate, CsrA repression must be restored. The reciprocal regulation of replication and transmission exemplified by CsrA likely enhances the fitness of microbes faced with fluctuating environments.


Immunity | 2015

Interleukin-33 in Tissue Homeostasis, Injury, and Inflammation

Ari B. Molofsky; Adam K. Savage; Richard M. Locksley

Interleukin-33 (IL-33) is a nuclear-associated cytokine of the IL-1 family originally described as a potent inducer of allergic type 2 immunity. IL-33 signals via the receptor ST2, which is highly expressed on group 2 innate lymphoid cells (ILC2s) and T helper 2 (Th2) cells, thus underpinning its association with helminth infection and allergic pathology. Recent studies have revealed ST2 expression on subsets of regulatory T cells, and for a role for IL-33 in tissue homeostasis and repair that suggests previously unrecognized interactions within these cellular networks. IL-33 can participate in pathologic fibrotic reactions, or, in the setting of microbial invasion, can cooperate with inflammatory cytokines to promote responses by cytotoxic NK cells, Th1 cells, and CD8(+) T cells. Here, we highlight the regulation and function of IL-33 and ST2 and review their roles in homeostasis, damage, and inflammation, suggesting a conceptual framework for future studies.


Immunity | 2015

Interleukin-33 and Interferon-γ Counter-Regulate Group 2 Innate Lymphoid Cell Activation during Immune Perturbation

Ari B. Molofsky; Frédéric Van Gool; Hong-Erh Liang; Steven J. Van Dyken; Jesse C. Nussbaum; Jinwoo Lee; Jeffrey A. Bluestone; Richard M. Locksley

Group 2 innate lymphoid cells (ILC2s) and regulatory T (Treg) cells are systemically induced by helminth infection but also sustain metabolic homeostasis in adipose tissue and contribute to tissue repair during injury. Here we show that interleukin-33 (IL-33) mediates activation of ILC2s and Treg cells in resting adipose tissue, but also after helminth infection or treatment with IL-2. Unexpectedly, ILC2-intrinsic IL-33 activation was required for Treg cell accumulation in vivo and was independent of ILC2 type 2 cytokines but partially dependent on direct co-stimulatory interactions via ICOSL-ICOS. IFN-γ inhibited ILC2 activation and Treg cell accumulation by IL-33 in infected tissue, as well as adipose tissue, where repression increased with aging and high-fat diet-induced obesity. IL-33 and ILC2s are central mediators of type 2 immune responses that promote tissue and metabolic homeostasis, and IFN-γ suppresses this pathway, likely to promote inflammatory responses and divert metabolic resources necessary to protect the host.


Immunity | 2014

Chitin Activates Parallel Immune Modules that Direct Distinct Inflammatory Responses via Innate Lymphoid Type 2 and γδ T Cells

Steven J. Van Dyken; Alexander Mohapatra; Jesse C. Nussbaum; Ari B. Molofsky; Emily E. Thornton; Steven F. Ziegler; Andrew N. J. McKenzie; Matthew F. Krummel; Hong-Erh Liang; Richard M. Locksley

Chitin, a polysaccharide constituent of many allergens and parasites, initiates innate type 2 lung inflammation through incompletely defined pathways. We show that inhaled chitin induced expression of three epithelial cytokines, interleukin-25 (IL-25), IL-33, and thymic stromal lymphopoietin (TSLP), which nonredundantly activated resident innate lymphoid type 2 cells (ILC2s) to express IL-5 and IL-13 necessary for accumulation of eosinophils and alternatively activated macrophages (AAMs). In the absence of all three epithelial cytokines, ILC2s normally populated the lung but failed to increase IL-5 and IL-13. Although eosinophils and AAMs were attenuated, neutrophil influx remained normal without these epithelial cytokines. Genetic ablation of ILC2s, however, enhanced IL-1β, TNFα, and IL-23 expression, increased activation of IL-17A-producing γδ T cells, and prolonged neutrophil influx. Thus, chitin elicited patterns of innate cytokines that targeted distinct populations of resident lymphoid cells, revealing divergent but interacting pathways underlying the tissue accumulation of specific types of inflammatory myeloid cells.


Infection and Immunity | 2005

Components of the Legionella pneumophila flagellar regulon contribute to multiple virulence traits, including lysosome avoidance and macrophage death

Ari B. Molofsky; Lynne M. Shetron-Rama; Michele S. Swanson

ABSTRACT Legionella pneumophila is a motile intracellular pathogen of macrophages and amoebae. When nutrients become scarce, the bacterium induces expression of transmission traits, some of which are dependent on the flagellar sigma factor FliA (σ28). To test how particular components of the L. pneumophila flagellar regulon contribute to virulence, we compared a fliA mutant with strains whose flagellar construction is disrupted at various stages. We find that L. pneumophila requires FliA to avoid lysosomal degradation in murine bone marrow-derived macrophages (BMM), to regulate production of a melanin-like pigment, and to regulate binding to the dye crystal violet, whereas motility, flagellar secretion, and external flagella or flagellin are dispensable for these activities. Thus, in addition to flagellar genes, the FliA sigma factor regulates an effector(s) or regulator(s) that contributes to other transmissive traits, notably inhibition of phagosome maturation. Whether or not the microbes produced flagellin, all nonmotile L. pneumophila mutants bound BMM less efficiently than the wild type, resulting in poor infectivity and a loss of contact-dependent death of BMM. Therefore, bacterial motility increases contact with host cells during infection, but flagellin is not an adhesin. When BMM contact by each nonmotile strain was promoted by centrifugation, all the mutants bound BMM similarly, but only those microbes that synthesized flagellin induced BMM death. Thus, the flagellar regulon equips the aquatic pathogen L. pneumophila to coordinate motility with multiple traits vital to virulence.

Collaboration


Dive into the Ari B. Molofsky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong-Erh Liang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ajay Chawla

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinwoo Lee

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge