Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven J. Van Dyken is active.

Publication


Featured researches published by Steven J. Van Dyken.


Journal of Experimental Medicine | 2013

Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages

Ari B. Molofsky; Jesse C. Nussbaum; Hong-Erh Liang; Steven J. Van Dyken; Laurence E. Cheng; Alexander Mohapatra; Ajay Chawla; Richard M. Locksley

Innate lymphoid type 2 cells maintain eosinophils and alternatively activated macrophages in visceral fat via the production of IL-5 and IL-13.


Nature | 2013

Type 2 innate lymphoid cells control eosinophil homeostasis

Jesse C. Nussbaum; Steven J. Van Dyken; Jakob von Moltke; Laurence E. Cheng; Alexander Mohapatra; Ari B. Molofsky; Emily E. Thornton; Matthew F. Krummel; Ajay Chawla; Hong-Erh Liang; Richard M. Locksley

Eosinophils are specialized myeloid cells associated with allergy and helminth infections. Blood eosinophils demonstrate circadian cycling, as described over 80 years ago, and are abundant in the healthy gastrointestinal tract. Although a cytokine, interleukin (IL)-5, and chemokines such as eotaxins mediate eosinophil development and survival, and tissue recruitment, respectively, the processes underlying the basal regulation of these signals remain unknown. Here we show that serum IL-5 levels are maintained by long-lived type 2 innate lymphoid cells (ILC2) resident in peripheral tissues. ILC2 cells secrete IL-5 constitutively and are induced to co-express IL-13 during type 2 inflammation, resulting in localized eotaxin production and eosinophil accumulation. In the small intestine where eosinophils and eotaxin are constitutive, ILC2 cells co-express IL-5 and IL-13; this co-expression is enhanced after caloric intake. The circadian synchronizer vasoactive intestinal peptide also stimulates ILC2 cells through the VPAC2 receptor to release IL-5, linking eosinophil levels with metabolic cycling. Tissue ILC2 cells regulate basal eosinophilopoiesis and tissue eosinophil accumulation through constitutive and stimulated cytokine expression, and this dissociated regulation can be tuned by nutrient intake and central circadian rhythms.


Annual Review of Immunology | 2013

Interleukin-4- and Interleukin-13-Mediated Alternatively Activated Macrophages: Roles in Homeostasis and Disease

Steven J. Van Dyken; Richard M. Locksley

The macrophage, a versatile cell type prominently involved in host defense and immunity, assumes a distinct state of alternative activation in the context of polarized type 2 immune responses such as allergic inflammation and helminth infection. This alternatively activated phenotype is induced by the canonical type 2 cytokines interleukin (IL)-4 and IL-13, which mediate expression of several characteristic markers along with a dramatic shift in macrophage metabolic pathways that influence surrounding cells and tissues. We discuss recent advances in the understanding of IL-4- and IL-13-mediated alternatively activated macrophages and type 2 immune responses; such advances have led to an expanded appreciation for functions of these cells beyond immunity, including maintenance of physiologic homeostasis and tissue repair.


Immunity | 2015

Interleukin-33 and Interferon-γ Counter-Regulate Group 2 Innate Lymphoid Cell Activation during Immune Perturbation

Ari B. Molofsky; Frédéric Van Gool; Hong-Erh Liang; Steven J. Van Dyken; Jesse C. Nussbaum; Jinwoo Lee; Jeffrey A. Bluestone; Richard M. Locksley

Group 2 innate lymphoid cells (ILC2s) and regulatory T (Treg) cells are systemically induced by helminth infection but also sustain metabolic homeostasis in adipose tissue and contribute to tissue repair during injury. Here we show that interleukin-33 (IL-33) mediates activation of ILC2s and Treg cells in resting adipose tissue, but also after helminth infection or treatment with IL-2. Unexpectedly, ILC2-intrinsic IL-33 activation was required for Treg cell accumulation in vivo and was independent of ILC2 type 2 cytokines but partially dependent on direct co-stimulatory interactions via ICOSL-ICOS. IFN-γ inhibited ILC2 activation and Treg cell accumulation by IL-33 in infected tissue, as well as adipose tissue, where repression increased with aging and high-fat diet-induced obesity. IL-33 and ILC2s are central mediators of type 2 immune responses that promote tissue and metabolic homeostasis, and IFN-γ suppresses this pathway, likely to promote inflammatory responses and divert metabolic resources necessary to protect the host.


Immunity | 2014

Chitin Activates Parallel Immune Modules that Direct Distinct Inflammatory Responses via Innate Lymphoid Type 2 and γδ T Cells

Steven J. Van Dyken; Alexander Mohapatra; Jesse C. Nussbaum; Ari B. Molofsky; Emily E. Thornton; Steven F. Ziegler; Andrew N. J. McKenzie; Matthew F. Krummel; Hong-Erh Liang; Richard M. Locksley

Chitin, a polysaccharide constituent of many allergens and parasites, initiates innate type 2 lung inflammation through incompletely defined pathways. We show that inhaled chitin induced expression of three epithelial cytokines, interleukin-25 (IL-25), IL-33, and thymic stromal lymphopoietin (TSLP), which nonredundantly activated resident innate lymphoid type 2 cells (ILC2s) to express IL-5 and IL-13 necessary for accumulation of eosinophils and alternatively activated macrophages (AAMs). In the absence of all three epithelial cytokines, ILC2s normally populated the lung but failed to increase IL-5 and IL-13. Although eosinophils and AAMs were attenuated, neutrophil influx remained normal without these epithelial cytokines. Genetic ablation of ILC2s, however, enhanced IL-1β, TNFα, and IL-23 expression, increased activation of IL-17A-producing γδ T cells, and prolonged neutrophil influx. Thus, chitin elicited patterns of innate cytokines that targeted distinct populations of resident lymphoid cells, revealing divergent but interacting pathways underlying the tissue accumulation of specific types of inflammatory myeloid cells.


Journal of Immunology | 2011

Fungal Chitin from Asthma-Associated Home Environments Induces Eosinophilic Lung Infiltration

Steven J. Van Dyken; Daniel Garcia; Paul Porter; Xiaozhu Huang; Patricia J. Quinlan; Paul D. Blanc; David B. Corry; Richard M. Locksley

Development of asthma and allergic inflammation involves innate immunity, but the environmental contributions remain incompletely defined. Analysis of dust collected from the homes of asthmatic individuals revealed that the polysaccharide chitin is environmentally widespread and associated with β-glucans, possibly from ubiquitous fungi. Cell wall preparations of Aspergillus isolated from house dust induced robust recruitment of eosinophils into mouse lung, an effect that was attenuated by enzymatic degradation of cell wall chitin and β-glucans. Mice expressing constitutively active acidic mammalian chitinase in the lungs demonstrated a significant reduction in eosinophil infiltration after fungal challenge. Conversely, chitinase inhibition prolonged the duration of tissue eosinophilia. Thus, fungal chitin derived from home environments associated with asthma induces eosinophilic allergic inflammation in the lung, and mammalian chitinases, including acidic mammalian chitinase, limit this process.


Nature Immunology | 2016

A tissue checkpoint regulates type 2 immunity

Steven J. Van Dyken; Jesse C. Nussbaum; Jinwoo Lee; Ari B. Molofsky; Hong-Erh Liang; Joshua L. Pollack; Rachel E. Gate; Genevieve E. Haliburton; Chun Ye; Alexander Marson; David J. Erle; Richard M. Locksley

Group 2 innate lymphoid cells (ILC2s) and CD4+ type 2 helper T cells (TH2 cells) are defined by their similar effector cytokines, which together mediate the features of allergic immunity. We found that tissue ILC2s and TH2 cells differentiated independently but shared overlapping effector function programs that were mediated by exposure to the tissue-derived cytokines interleukin 25 (IL-25), IL-33 and thymic stromal lymphopoietin (TSLP). Loss of these three tissue signals did not affect lymph node priming, but abrogated the terminal differentiation of effector TH2 cells and adaptive lung inflammation in a T cell–intrinsic manner. Our findings suggest a mechanism by which diverse perturbations can activate type 2 immunity and reveal a shared local-tissue-elicited checkpoint that can be exploited to control both innate and adaptive allergic inflammation.


Molecular and Cellular Biology | 2007

Structural and Mechanistic Features of Protein O Glycosylation Linked to CD8+ T-Cell Apoptosis

Steven J. Van Dyken; Ryan S. Green; Jamey D. Marth

ABSTRACT CD8+ T-cell apoptosis is essential for the contraction phase of the immune response, yet the initiating signals and precise pathways involved are unresolved. The ST3Gal-I sialyltransferase is a candidate mechanistic component and catalyzes sialic acid addition to core 1 O-glycans during protein O glycosylation. ST3Gal-I inactivation or enzymatic removal of its product renders CD8+ T cells, but not CD4+ T cells, susceptible to apoptosis by differential cross-linking of O-glycoproteins in the absence of interleukin-2 and T-cell receptor (TCR) signaling. This results in caspase activation, DNA fragmentation, and phosphatidylserine externalization prior to cell death. We further show that ST3Gal-I function is regulated by a posttranscriptional mechanism operating distal to Golgi core 2 O glycosylation and is invariably linked to CD8+ T-cell contraction following viral (lymphocytic choriomeningitis virus) infection and bacterial (staphylococcal enterotoxin B) antigen immunization. The mechanism does not involve the ST3Gal-I substrate CD43 or core 2 O-glycan induction and overcomes the ability of Bcl-2 to inhibit the contraction phase in vivo. Loss of ST3Gal-I function further reduces Bim-deficient CD8+ T-cell accumulation without diminishing apoptotic sensitivity. We propose that an endogenous lectin activates an apoptotic pathway constructed in CD8+ T cells following TCR stimulation and enables contraction upon attenuation of immune signaling.


Science | 2018

Pulmonary neuroendocrine cells amplify allergic asthma responses

Pengfei Sui; Darin L. Wiesner; Jinhao Xu; Yan Zhang; Jinwoo Lee; Steven J. Van Dyken; Amber J. Lashua; Chuyue Yu; Bruce S. Klein; Richard M. Locksley; Gail H. Deutsch; Xin Sun

Finding a role for PNECs in asthma Pulmonary neuroendocrine cells (PNECs) are a rare cell type located in airway and alveolar epithelia and are often in contact with sensory nerve fibers. They have a wide phylogenic distribution and are found even in the relatively primitive lungs of amphibia and reptiles, suggesting a critical function. Sui et al. found that mice lacking PNECs have suppressed type 2 (allergic) immune responses. PNECs were observed in close proximity to group 2 innate lymphoid cells (ILC2s) around airway branch points. The PNECs enhanced ILC2 activity by secreting CGRP (calcitonin gene-related peptide). They also induced goblet-cell hyperplasia via the neurotransmitter GABA (γ-aminobutyric acid). Interestingly, human asthma patients were found to have increased PNEC numbers, suggesting a potential therapeutic target for the treatment of asthma. Science, this issue p. eaan8546 PNECs, a rare population of cells in the airways, are critical for amplifying the airway allergen signal into mucosal responses in the lungs. INTRODUCTION The lung, with its vast surface area, senses and responds to signals in inhaled air. Aberrant interactions between the lung and the environment underlie many diseases, including asthma. In vitro data show that pulmonary neuroendocrine cells (PNECs), a rare airway epithelial cell population, can act as chemosensors. Once stimulated in culture, they release dense core vesicles rich in neuropeptides, amines, and neurotransmitters. These bioactive molecules are capable of eliciting immune and physiological responses. A recent in vivo study by our group revealed that the proper development of PNECs into self-clustering units called neuroepithelial bodies is essential for restricting the number of immune cells in the naïve lung. However, whether PNECs can function in vivo to translate exogenous airway signals such as allergens into the cascade of downstream responses is unknown. RATIONALE To test the hypothesis that PNECs act as sensors in the lung, we generated mouse mutants that lack PNECs by inactivating Ascl1 in the airway epithelium—i.e., mutants that were depleted of PNECs starting at development. We exposed these mutants to either ovalbumin or house dust mites, following regimes of existing asthma models. We determined whether the mutants showed different asthmatic responses than controls. We elucidated the underlying mechanisms by identifying molecular effectors and cellular targets of PNECs. To complement the functional tests in mice, we investigated whether human asthma patients showed pathological changes in their PNECs. RESULTS Although normal at baseline, Ascl1-mutant mice exhibited severely reduced goblet cell hyperplasia and immune cell numbers compared with controls after allergen challenge. In investigating possible molecular effectors, we found that several PNEC products were decreased in mutants relative to controls after allergen challenge, including calcitonin gene-related peptide (CGRP) and γ-aminobutyric acid (GABA). In exploring possible cellular targets, we found that innate lymphoid group 2 cells (ILC2s) were enriched at airway branch points, similar to PNECs. The PNEC product CGRP stimulated ILC2 production of interleukin-5 in culture. Conversely, inactivation of the CGRP receptor gene Calcrl in ILC2s led to dampened immune responses to allergens. In contrast to CGRP, GABA did not increase ILC2 cytokine secretion. Rather, inactivation of GABA biogenesis led to defective goblet cell hyperplasia after allergen challenge, suggesting that GABA is required for this response in the airway epithelium. The instillation of a mixture of CGRP and GABA in Ascl1 mutants restored both immune cell increases and goblet cell hyperplasia after allergen challenge, indicating that these products are the primary molecular effectors of PNECs in vivo. Consistent with these results from mice, we found increased PNEC numbers and cluster sizes in human asthma patients, which may underlie the heightened response to allergens in these individuals. CONCLUSION Our results demonstrate that PNECs, despite being a rare population of cells in the airway, are critical for amplifying the airway allergen signal into mucosal type 2 responses. Specifically, PNECs act through their product GABA to stimulate airway epithelial mucus production. In parallel, PNECs act through another product, CGRP, to stimulate ILC2 production of cytokines, which in turn recruit downstream immune cells. PNECs and ILC2s form neuroimmunological modules at the airway branch points, which are also the sites where airway particles are enriched. Our findings indicate that the PNEC-ILC2 axis functions to sense inhaled inputs, such as allergens, and amplify them into lung outputs, such as the allergic asthma response. PNECs are preferentially localized at branch points. A mouse airway stained by antibody against CGRP, to label PNECs (magenta) and antibody against SCGB1A1 to label club cells (green) (200× magnification). PNECs often cluster into neuroepithelial bodies and are preferentially localized at branch points. Pulmonary neuroendocrine cells (PNECs) are rare airway epithelial cells whose function is poorly understood. Here we show that Ascl1-mutant mice that have no PNECs exhibit severely blunted mucosal type 2 response in models of allergic asthma. PNECs reside in close proximity to group 2 innate lymphoid cells (ILC2s) near airway branch points. PNECs act through calcitonin gene-related peptide (CGRP) to stimulate ILC2s and elicit downstream immune responses. In addition, PNECs act through the neurotransmitter γ-aminobutyric acid (GABA) to induce goblet cell hyperplasia. The instillation of a mixture of CGRP and GABA in Ascl1-mutant airways restores both immune and goblet cell responses. In accordance, lungs from human asthmatics show increased PNECs. These findings demonstrate that the PNEC-ILC2 neuroimmunological modules function at airway branch points to amplify allergic asthma responses.


American Journal of Respiratory Cell and Molecular Biology | 2016

Ozone-Induced Nasal Type 2 Immunity in Mice Is Dependent on Innate Lymphoid Cells

Kazuyoshi Kumagai; Ryan P. Lewandowski; Daven N. Jackson-Humbles; Ning Li; Steven J. Van Dyken; James G. Wagner; Jack R. Harkema

Epidemiological studies suggest that elevated ambient concentrations of ozone are associated with activation of eosinophils in the nasal airways of atopic and nonatopic children. Mice repeatedly exposed to ozone develop eosinophilic rhinitis and type 2 immune responses. In this study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced eosinophilic rhinitis by using lymphoid-sufficient C57BL/6 mice, Rag2(-/-) mice that are devoid of T cells and B cells, and Rag2(-/-)Il2rg(-/-) mice that are depleted of all lymphoid cells including ILCs. The animals were exposed to 0 or 0.8 ppm ozone for 9 consecutive weekdays (4 h/d). Mice were killed 24 hours after exposure, and nasal tissues were selected for histopathology and gene expression analysis. ILC-sufficient C57BL/6 and Rag2(-/-) mice exposed to ozone developed marked eosinophilic rhinitis and epithelial remodeling (e.g., epithelial hyperplasia and mucous cell metaplasia). Chitinase-like proteins and alarmins (IL-33, IL-25, and thymic stromal lymphopoietin) were also increased morphometrically in the nasal epithelium of ozone-exposed C57BL/6 and Rag2(-/-) mice. Ozone exposure elicited increased expression of Il4, Il5, Il13, St2, eotaxin, MCP-2, Gob5, Arg1, Fizz1, and Ym2 mRNA in C57BL/6 and Rag2(-/-) mice. In contrast, ozone-exposed ILC-deficient Rag2(-/-)Il2rg(-/-) mice had no nasal lesions or overexpression of Th2- or ILC2-related transcripts. These results indicate that ozone-induced eosinophilic rhinitis, nasal epithelial remodeling, and type 2 immune activation are dependent on ILCs. To the best of our knowledge, this is the first study to demonstrate that ILCs play an important role in the nasal pathology induced by repeated ozone exposure.

Collaboration


Dive into the Steven J. Van Dyken's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong-Erh Liang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinwoo Lee

University of California

View shared research outputs
Top Co-Authors

Avatar

David J. Erle

University of California

View shared research outputs
Top Co-Authors

Avatar

Ajay Chawla

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge