Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hong-Erh Liang is active.

Publication


Featured researches published by Hong-Erh Liang.


Science | 2011

Eosinophils Sustain Adipose Alternatively Activated Macrophages Associated with Glucose Homeostasis

Davina Wu; Ari B. Molofsky; Hong-Erh Liang; Roberto R. Ricardo-Gonzalez; Hani Jouihan; Jennifer K. Bando; Ajay Chawla; Richard M. Locksley

Regulation of adipose tissue macrophages by eosinophils reveals an unexpected role for eosinophils in metabolic homeostasis. Eosinophils are associated with helminth immunity and allergy, often in conjunction with alternatively activated macrophages (AAMs). Adipose tissue AAMs are necessary to maintain glucose homeostasis and are induced by the cytokine interleukin-4 (IL-4). Here, we show that eosinophils are the major IL-4–expressing cells in white adipose tissues of mice, and, in their absence, AAMs are greatly attenuated. Eosinophils migrate into adipose tissue by an integrin-dependent process and reconstitute AAMs through an IL-4– or IL-13–dependent process. Mice fed a high-fat diet develop increased body fat, impaired glucose tolerance, and insulin resistance in the absence of eosinophils, and helminth-induced adipose tissue eosinophilia enhances glucose tolerance. Our results suggest that eosinophils play an unexpected role in metabolic homeostasis through maintenance of adipose AAMs.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Systemically dispersed innate IL-13–expressing cells in type 2 immunity

April Price; Hong-Erh Liang; Brandon M. Sullivan; R. Lee Reinhardt; Chris J. Eisley; David J. Erle; Richard M. Locksley

Type 2 immunity is a stereotyped host response to allergens and parasitic helminths that is sustained in large part by the cytokines IL-4 and IL-13. Recent advances have called attention to the contributions by innate cells in initiating adaptive immunity, including a novel lineage-negative population of cells that secretes IL-13 and IL-5 in response to the epithelial cytokines IL-25 and IL-33. Here, we use IL-4 and IL-13 reporter mice to track lineage-negative innate cells that arise during type 2 immunity or in response to IL-25 and IL-33 in vivo. Unexpectedly, lineage-negative IL-25 (and IL-33) responsive cells are widely distributed in tissues of the mouse and are particularly prevalent in mesenteric lymph nodes, spleen, and liver. These cells expand robustly in response to exogenous IL-25 or IL-33 and after infection with the helminth Nippostrongylus brasiliensis, and they are the major innate IL-13–expressing cells under these conditions. Activation of these cells using IL-25 is sufficient for worm clearance, even in the absence of adaptive immunity. Widely dispersed innate type 2 helper cells, which we designate Ih2 cells, play an integral role in type 2 immune responses.


Nature | 2007

Chitin induces accumulation in tissue of innate immune cells associated with allergy

Tiffany A. Reese; Hong-Erh Liang; AndrewN M. Tager; Andrew D. Luster; Nico van Rooijen; David Voehringer; Richard M. Locksley

Allergic and parasitic worm immunity is characterized by infiltration of tissues with interleukin (IL)-4- and IL-13-expressing cells, including T-helper-2 cells, eosinophils and basophils. Tissue macrophages assume a distinct phenotype, designated alternatively activated macrophages. Relatively little is known about the factors that trigger these host responses. Chitin, a widespread environmental biopolymer of N-acetyl-β-d-glucosamine, provides structural rigidity to fungi, crustaceans, helminths and insects. Here, we show that chitin induces the accumulation in tissue of IL-4-expressing innate immune cells, including eosinophils and basophils, when given to mice. Tissue infiltration was unaffected by the absence of Toll-like-receptor-mediated lipopolysaccharide recognition but did not occur if the injected chitin was pre-treated with the IL-4- and IL-13-inducible mammalian chitinase, AMCase, or if the chitin was injected into mice that overexpressed AMCase. Chitin mediated alternative macrophage activation in vivo and the production of leukotriene B4, which was required for optimal immune cell recruitment. Chitin is a recognition element for tissue infiltration by innate cells implicated in allergic and helminth immunity and this process can be negatively regulated by a vertebrate chitinase.


Nature Immunology | 2009

Cytokine-secreting follicular T cells shape the antibody repertoire

R. Lee Reinhardt; Hong-Erh Liang; Richard M. Locksley

High-affinity antibodies are critical for host protection and underlie successful vaccines. The generation of such antibodies requires T cell–dependent help, which mediates germinal center reactions in which mutation and selection of B cells occurs. Using an interleukin 4–reporter system, we show here that CD4+ follicular helper T cells constituted essentially all of the cytokine-secreting T cells in lymph nodes and were functionally distinct from T cells secreting the same cytokine in peripheral tissues. Follicular helper T cells with different cytokine profiles could be isolated as conjugates with B cells undergoing cytokine-specific immunoglobulin class switching with evidence of somatic hypermutation. Our findings support a model in which B cells compete for cytokines produced by follicular helper T cells that shape the affinity and isotype of the antibody response.


Journal of Experimental Medicine | 2013

Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages

Ari B. Molofsky; Jesse C. Nussbaum; Hong-Erh Liang; Steven J. Van Dyken; Laurence E. Cheng; Alexander Mohapatra; Ajay Chawla; Richard M. Locksley

Innate lymphoid type 2 cells maintain eosinophils and alternatively activated macrophages in visceral fat via the production of IL-5 and IL-13.


Nature | 2013

Type 2 innate lymphoid cells control eosinophil homeostasis

Jesse C. Nussbaum; Steven J. Van Dyken; Jakob von Moltke; Laurence E. Cheng; Alexander Mohapatra; Ari B. Molofsky; Emily E. Thornton; Matthew F. Krummel; Ajay Chawla; Hong-Erh Liang; Richard M. Locksley

Eosinophils are specialized myeloid cells associated with allergy and helminth infections. Blood eosinophils demonstrate circadian cycling, as described over 80 years ago, and are abundant in the healthy gastrointestinal tract. Although a cytokine, interleukin (IL)-5, and chemokines such as eotaxins mediate eosinophil development and survival, and tissue recruitment, respectively, the processes underlying the basal regulation of these signals remain unknown. Here we show that serum IL-5 levels are maintained by long-lived type 2 innate lymphoid cells (ILC2) resident in peripheral tissues. ILC2 cells secrete IL-5 constitutively and are induced to co-express IL-13 during type 2 inflammation, resulting in localized eotaxin production and eosinophil accumulation. In the small intestine where eosinophils and eotaxin are constitutive, ILC2 cells co-express IL-5 and IL-13; this co-expression is enhanced after caloric intake. The circadian synchronizer vasoactive intestinal peptide also stimulates ILC2 cells through the VPAC2 receptor to release IL-5, linking eosinophil levels with metabolic cycling. Tissue ILC2 cells regulate basal eosinophilopoiesis and tissue eosinophil accumulation through constitutive and stimulated cytokine expression, and this dissociated regulation can be tuned by nutrient intake and central circadian rhythms.


Nature Immunology | 2012

Divergent expression patterns of IL-4 and IL-13 define unique functions in allergic immunity

Hong-Erh Liang; R. Lee Reinhardt; Jennifer K. Bando; Brandon M. Sullivan; I-Cheng Ho; Richard M. Locksley

Interleukin 4 (IL-4) and IL-13 are critical for responses to parasitic helminthes. We used genetically engineered reporter mice to assess the temporal and spatial production of these cytokines in vivo. In lymph nodes, IL-4, but not IL-13, was made by follicular helper T cells (TFH cells). In contrast, tissue type 2 helper T cells (TH2 cells) produced both cytokines. There was also divergent production of IL-4 and IL-13 among cells of the innate immune system, whereby basophils produced IL-4, whereas innate helper type 2 cells (Ih2 cells) produced IL-13. IL-13 production by TH2 and Ih2 cells was dependent on the transcription factor GATA-3, which was present in large amounts in these cells, and in contrast to the small amount of GATA-3 in TFH cells and basophils. The distinct localization and cellular expression of IL-4 and IL-13 explains their unique roles during allergic immunity.


Nature | 2016

Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit.

Jakob von Moltke; Ming Ji; Hong-Erh Liang; Richard M. Locksley

Parasitic helminths and allergens induce a type 2 immune response leading to profound changes in tissue physiology, including hyperplasia of mucus-secreting goblet cells and smooth muscle hypercontractility. This response, known as ‘weep and sweep’, requires interleukin (IL)-13 production by tissue-resident group 2 innate lymphoid cells (ILC2s) and recruited type 2 helper T cells (TH2 cells). Experiments in mice and humans have demonstrated requirements for the epithelial cytokines IL-33, thymic stromal lymphopoietin (TSLP) and IL-25 in the activation of ILC2s, but the sources and regulation of these signals remain poorly defined. In the small intestine, the epithelium consists of at least five distinct cellular lineages, including the tuft cell, whose function is unclear. Here we show that tuft cells constitutively express IL-25 to sustain ILC2 homeostasis in the resting lamina propria in mice. After helminth infection, tuft-cell-derived IL-25 further activates ILC2s to secrete IL-13, which acts on epithelial crypt progenitors to promote differentiation of tuft and goblet cells, leading to increased frequencies of both. Tuft cells, ILC2s and epithelial progenitors therefore comprise a response circuit that mediates epithelial remodelling associated with type 2 immunity in the small intestine, and perhaps at other mucosal barriers populated by these cells.


Nature Immunology | 2011

Genetic analysis of basophil function in vivo.

Brandon M. Sullivan; Hong-Erh Liang; Jennifer K. Bando; Davina Wu; Laurence E. Cheng; James McKerrow; Christopher D.C. Allen; Richard M. Locksley

Contributions by basophils to allergic and helminth immunity remain incompletely defined. Using sensitive interleukin 4 (Il4) reporter alleles, we demonstrate here that basophil IL-4 production occurs by a CD4+ T cell–dependent process restricted to the peripheral tissues affected. We genetically marked and achieved specific deletion of basophils and found that basophils did not mediate T helper type 2 (TH2) priming in vivo. Two-photon imaging confirmed that basophils did not interact with antigen-specific T cells in lymph nodes but engaged in prolonged serial interactions with T cells in lung tissues. Although targeted deletion of IL-4 and IL-13 in either CD4+ T cells or basophils had a minimal effect on worm clearance, deletion from both lineages demonstrated a nonredundant role for basophil cytokines in primary helminth immunity.


Immunity | 2008

Regulation of Hierarchical Clustering and Activation of Innate Immune Cells by Dendritic Cells

Suk-Jo Kang; Hong-Erh Liang; Boris Reizis; Richard M. Locksley

An early granulomatous response, characterized by collections of white blood cells at foci surrounding pathogens, occurs after infection by many intracellular organisms, including Listeria, but how these clusters become organized and for what purpose remain poorly understood. Here, we showed that dendritic cell (DC) activation by Listeria nucleated rapid clustering of innate cells, including granulocytes, natural killer (NK) cells, and monocytes, to sites of bacteria propagation where interleukin-12 was expressed in the spleen. Clustered NK cells expressed interferon-gamma (IFN-gamma), which was necessary for the activation and maturation of colocalized monocytes to tumor necrosis factor- and inducible nitric oxide synthase-producing DCs (TipDCs). NK cell clustering was necessary for IFN-gamma production and required pertussis-toxin-sensitive recruitment, in part mediated by the chemokine receptor CCR5, and MyD88 adaptor-mediated signaling. Thus, spatial organization of the immune response by DCs between 6 and 24 hr ensures functional activation of innate cells, which restricts pathogens before adaptive immunity is fully activated.

Collaboration


Dive into the Hong-Erh Liang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

April Price

University of California

View shared research outputs
Top Co-Authors

Avatar

Davina Wu

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge